Suppr超能文献

厘清芝加哥新冠疫情期间社区层面犯罪趋势的变化

Disentangling community-level changes in crime trends during the COVID-19 pandemic in Chicago.

作者信息

Campedelli Gian Maria, Favarin Serena, Aziani Alberto, Piquero Alex R

机构信息

Department of Sociology and Social Research, University of Trento, Trento, Italy.

School of Political and Social Sciences, Università Cattolica del Sacro Cuore, Milan, Italy.

出版信息

Crime Sci. 2020;9(1):21. doi: 10.1186/s40163-020-00131-8. Epub 2020 Oct 27.

Abstract

Recent studies exploiting city-level time series have shown that, around the world, several crimes declined after COVID-19 containment policies have been put in place. Using data at the community-level in Chicago, this work aims to advance our understanding on how public interventions affected criminal activities at a finer spatial scale. The analysis relies on a two-step methodology. First, it estimates the community-wise causal impact of social distancing and shelter-in-place policies adopted in Chicago via Structural Bayesian Time-Series across four crime categories (i.e., burglary, assault, narcotics-related offenses, and robbery). Once the models detected the direction, magnitude and significance of the trend changes, Firth's Logistic Regression is used to investigate the factors associated to the statistically significant crime reduction found in the first step of the analyses. Statistical results first show that changes in crime trends differ across communities and crime types. This suggests that beyond the results of aggregate models lies a complex picture characterized by diverging patterns. Second, regression models provide mixed findings regarding the correlates associated with significant crime reduction: several relations have opposite directions across crimes with population being the only factor that is stably and positively associated with significant crime reduction.

摘要

最近利用城市层面时间序列的研究表明,在全球范围内,在实施新冠疫情防控政策后,几类犯罪有所减少。本研究利用芝加哥社区层面的数据,旨在深化我们对公共干预措施如何在更精细的空间尺度上影响犯罪活动的理解。该分析依赖于一种两步法。首先,通过结构贝叶斯时间序列估计芝加哥实施的社会 distancing 和就地避难政策对四个犯罪类别(即入室盗窃、袭击、毒品相关犯罪和抢劫)的社区层面因果影响。一旦模型检测到趋势变化的方向、幅度和显著性,就使用费思逻辑回归来调查与分析第一步中发现的具有统计学意义的犯罪减少相关的因素。统计结果首先表明,犯罪趋势的变化因社区和犯罪类型而异。这表明,除了总体模型的结果之外,还有一幅以不同模式为特征的复杂图景。其次,回归模型关于与显著犯罪减少相关的因素的研究结果喜忧参半:几种关系在不同犯罪类型中方向相反,人口是唯一与显著犯罪减少稳定且正相关的因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de24/7590992/2e664a5ea027/40163_2020_131_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验