Suppr超能文献

使用 cluster4x 对数据集进行预聚类可以提高高通量晶体学药物筛选分析的信噪比。

Pre-clustering data sets using cluster4x improves the signal-to-noise ratio of high-throughput crystallography drug-screening analysis.

机构信息

Diamond Light Source Ltd, Didcot OX11 0DE, United Kingdom.

出版信息

Acta Crystallogr D Struct Biol. 2020 Nov 1;76(Pt 11):1134-1144. doi: 10.1107/S2059798320012619. Epub 2020 Oct 16.

Abstract

Drug and fragment screening at X-ray crystallography beamlines has been a huge success. However, it is inevitable that more high-profile biological drug targets will be identified for which high-quality, highly homogenous crystal systems cannot be found. With increasing heterogeneity in crystal systems, the application of current multi-data-set methods becomes ever less sensitive to bound ligands. In order to ease the bottleneck of finding a well behaved crystal system, pre-clustering of data sets can be carried out using cluster4x after data collection to separate data sets into smaller partitions in order to restore the sensitivity of multi-data-set methods. Here, the software cluster4x is introduced for this purpose and validated against published data sets using PanDDA, showing an improved total signal from existing ligands and identifying new hits in both highly heterogenous and less heterogenous multi-data sets. cluster4x provides the researcher with an interactive graphical user interface with which to explore multi-data set experiments.

摘要

药物和片段筛选在 X 射线晶体学光束线上已经取得了巨大的成功。然而,不可避免的是,将会有更多备受关注的生物药物靶点被确定,而这些靶点无法找到高质量、高度同质的晶体系统。随着晶体系统的异质性增加,当前多数据集方法的应用对结合配体的灵敏度越来越低。为了缓解找到良好晶体系统的瓶颈问题,可以在数据收集后使用 cluster4x 对数据集进行预聚类,将数据集分成更小的分区,以恢复多数据集方法的灵敏度。这里,引入了软件 cluster4x 来达到这个目的,并使用 PanDDA 对已发布的数据集进行验证,显示出从现有配体中获得的总信号得到了改善,并在高度异质和异质程度较低的多数据集都识别到了新的命中。cluster4x 为研究人员提供了一个带有交互图形用户界面的工具,可以用于探索多数据集实验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf8f/7604910/d968f9a525a3/d-76-01134-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验