Förster Andreas, Schulze-Briese Clemens
DECTRIS Ltd., Täfernweg 1, 5405 Baden-Dättwil, Switzerland.
Struct Dyn. 2019 Dec 4;6(6):064302. doi: 10.1063/1.5131017. eCollection 2019 Nov.
Macromolecular crystallography (MX) is the dominant means of determining the three-dimensional structures of biological macromolecules, but the method has reached a critical juncture. New diffraction-limited storage rings and upgrades to the existing sources will provide beamlines with higher flux and brilliance, and even the largest detectors can collect at rates of several hundred hertz. Electron cryomicroscopy is successfully competing for structural biologists' most exciting projects. As a result, formerly scarce beam time is becoming increasingly abundant, and beamlines must innovate to attract users and ensure continued funding. Here, we will show how data collection has changed over the preceding five years and how alternative methods have emerged. We then explore how MX at synchrotrons might develop over the next five years. We predict that, despite the continued dominance of rotation crystallography, applications previously considered niche or experimental, such as serial crystallography, pink-beam crystallography, and crystallography at energies above 25 keV and below 5 keV, will rise in prominence as beamlines specialize to offer users the best value. Most of these emerging methods will require new hardware and software. With these advances, MX will more efficiently provide the high-resolution structures needed for drug development. MX will also be able to address a broader range of questions than before and contribute to a deeper understanding of biological processes in the context of integrative structural biology.
大分子晶体学(MX)是确定生物大分子三维结构的主要手段,但该方法已到了一个关键节点。新的衍射极限储存环以及对现有光源的升级将为光束线提供更高的通量和亮度,甚至最大的探测器也能以数百赫兹的速率进行采集。电子冷冻显微镜正成功地在争夺结构生物学家们最令人兴奋的项目。结果,以前稀缺的束流时间变得越来越充裕,光束线必须进行创新以吸引用户并确保持续的资金投入。在此,我们将展示在过去五年中数据采集是如何变化的以及替代方法是如何出现的。然后,我们探讨同步加速器上的MX在未来五年可能如何发展。我们预测,尽管旋转晶体学仍将占据主导地位,但以前被认为是小众或实验性的应用,如串行晶体学、粉红光束晶体学以及在能量高于25 keV和低于5 keV时的晶体学,将随着光束线专门为用户提供最佳价值而变得更加突出。这些新兴方法中的大多数将需要新的硬件和软件。随着这些进展,MX将更有效地提供药物开发所需的高分辨率结构。MX还将能够解决比以前更广泛的问题,并有助于在整合结构生物学的背景下更深入地理解生物过程。