文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

监督式机器学习方法在初级保健中检测家族性高胆固醇血症的性能及临床效用

Performance and clinical utility of supervised machine-learning approaches in detecting familial hypercholesterolaemia in primary care.

作者信息

Akyea Ralph K, Qureshi Nadeem, Kai Joe, Weng Stephen F

机构信息

Primary Care Stratified Medicine, Division of Primary Care, University of Nottingham, Nottingham, UK.

出版信息

NPJ Digit Med. 2020 Oct 30;3:142. doi: 10.1038/s41746-020-00349-5. eCollection 2020.


DOI:10.1038/s41746-020-00349-5
PMID:33145438
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7603302/
Abstract

Familial hypercholesterolaemia (FH) is a common inherited disorder, causing lifelong elevated low-density lipoprotein cholesterol (LDL-C). Most individuals with FH remain undiagnosed, precluding opportunities to prevent premature heart disease and death. Some machine-learning approaches improve detection of FH in electronic health records, though clinical impact is under-explored. We assessed performance of an array of machine-learning approaches for enhancing detection of FH, and their clinical utility, within a large primary care population. A retrospective cohort study was done using routine primary care clinical records of 4,027,775 individuals from the United Kingdom with total cholesterol measured from 1 January 1999 to 25 June 2019. Predictive accuracy of five common machine-learning algorithms (logistic regression, random forest, gradient boosting machines, neural networks and ensemble learning) were assessed for detecting FH. Predictive accuracy was assessed by area under the receiver operating curves (AUC) and expected vs observed calibration slope; with clinical utility assessed by expected case-review workload and likelihood ratios. There were 7928 incident diagnoses of FH. In addition to known clinical features of FH (raised total cholesterol or LDL-C and family history of premature coronary heart disease), machine-learning (ML) algorithms identified features such as raised triglycerides which reduced the likelihood of FH. Apart from logistic regression (AUC, 0.81), all four other ML approaches had similarly high predictive accuracy (AUC > 0.89). Calibration slope ranged from 0.997 for gradient boosting machines to 1.857 for logistic regression. Among those screened, high probability cases requiring clinical review varied from 0.73% using ensemble learning to 10.16% using deep learning, but with positive predictive values of 15.5% and 2.8% respectively. Ensemble learning exhibited a dominant positive likelihood ratio (45.5) compared to all other ML models (7.0-14.4). Machine-learning models show similar high accuracy in detecting FH, offering opportunities to increase diagnosis. However, the clinical case-finding workload required for yield of cases will differ substantially between models.

摘要

家族性高胆固醇血症(FH)是一种常见的遗传性疾病,会导致低密度脂蛋白胆固醇(LDL-C)终生升高。大多数FH患者仍未被诊断出来,从而失去了预防过早心脏病和死亡的机会。一些机器学习方法可改善在电子健康记录中对FH的检测,不过其临床影响尚未得到充分探索。我们在一大群初级保健人群中评估了一系列用于增强FH检测的机器学习方法的性能及其临床效用。利用来自英国的4,027,775名个体的常规初级保健临床记录进行了一项回顾性队列研究,这些个体在1999年1月1日至2019年6月25日期间测量了总胆固醇。评估了五种常见机器学习算法(逻辑回归、随机森林、梯度提升机、神经网络和集成学习)检测FH的预测准确性。通过受试者工作特征曲线下面积(AUC)和预期与观察到的校准斜率评估预测准确性;通过预期病例审查工作量和似然比评估临床效用。有7928例FH的新发诊断。除了FH的已知临床特征(总胆固醇或LDL-C升高以及早发冠心病家族史)外,机器学习(ML)算法还识别出甘油三酯升高等特征,这些特征降低了FH的可能性。除逻辑回归(AUC,0.81)外,其他四种ML方法均具有相似的高预测准确性(AUC>0.89)。校准斜率范围从梯度提升机的0.997到逻辑回归的1.857。在接受筛查的人群中,需要临床审查的高概率病例从使用集成学习的0.73%到使用深度学习的10.16%不等,但阳性预测值分别为15.5%和2.8%。与所有其他ML模型(7.0 - 14.4)相比,集成学习表现出显著的阳性似然比(45.5)。机器学习模型在检测FH方面显示出相似的高准确性,为增加诊断提供了机会。然而,不同模型间为发现病例所需的临床病例查找工作量将有很大差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b97f/7603302/98fca5b0eb9b/41746_2020_349_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b97f/7603302/9c4cd2b29cd6/41746_2020_349_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b97f/7603302/98fca5b0eb9b/41746_2020_349_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b97f/7603302/9c4cd2b29cd6/41746_2020_349_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b97f/7603302/98fca5b0eb9b/41746_2020_349_Fig4_HTML.jpg

相似文献

[1]
Performance and clinical utility of supervised machine-learning approaches in detecting familial hypercholesterolaemia in primary care.

NPJ Digit Med. 2020-10-30

[2]
Improving identification of familial hypercholesterolaemia in primary care: derivation and validation of the familial hypercholesterolaemia case ascertainment tool (FAMCAT).

Atherosclerosis. 2015-2

[3]
Low-density lipoprotein apheresis: an evidence-based analysis.

Ont Health Technol Assess Ser. 2007

[4]
Familial Hypercholesterolemia Identification by Machine Learning Using Lipid Profile Data Performs as Well as Clinical Diagnostic Criteria.

Circ Genom Precis Med. 2022-10

[5]
Selection of individuals for genetic testing for familial hypercholesterolaemia: development and external validation of a prediction model for the presence of a mutation causing familial hypercholesterolaemia.

Eur Heart J. 2017-2-21

[6]
Elucigene FH20 and LIPOchip for the diagnosis of familial hypercholesterolaemia: a systematic review and economic evaluation.

Health Technol Assess. 2012

[7]
Evaluating a clinical tool (FAMCAT) for identifying familial hypercholesterolaemia in primary care: a retrospective cohort study.

BJGP Open. 2020-12-15

[8]
Comparing the performance of the novel FAMCAT algorithms and established case-finding criteria for familial hypercholesterolaemia in primary care.

Open Heart. 2021-10

[9]
Screening for hypercholesterolaemia versus case finding for familial hypercholesterolaemia: a systematic review and cost-effectiveness analysis.

Health Technol Assess. 2000

[10]
Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?

Clin Orthop Relat Res. 2020-7

引用本文的文献

[1]
Magnitude and Impact of Hallucinations in Tabular Synthetic Health Data on Prognostic Machine Learning Models: Validation Study.

J Med Internet Res. 2025-8-18

[2]
Integrating New Technologies in Lipidology: A Comprehensive Review.

J Clin Med. 2025-7-14

[3]
Effect of the exposure to brominated flame retardants on hyperuricemia using interpretable machine learning algorithms based on the SHAP methodology.

PLoS One. 2025-6-26

[4]
Opportunities, challenges, and requirements for Artificial Intelligence (AI) implementation in Primary Health Care (PHC): a systematic review.

BMC Prim Care. 2025-6-9

[5]
The interpretable machine learning model for depression associated with heavy metals via EMR mining method.

Sci Rep. 2025-3-28

[6]
Machine learning approaches to identify the link between heavy metal exposure and ischemic stroke using the US NHANES data from 2003 to 2018.

Front Public Health. 2024

[7]
Assessment of EMR ML Mining Methods for Measuring Association between Metal Mixture and Mortality for Hypertension.

High Blood Press Cardiovasc Prev. 2024-9

[8]
Predicting dyslipidemia incidence: unleashing machine learning algorithms on Lifestyle Promotion Project data.

BMC Public Health. 2024-7-3

[9]
Improving the Detection of Potential Cases of Familial Hypercholesterolemia: Could Machine Learning Be Part of the Solution?

J Am Heart Assoc. 2024-6-18

[10]
The relationship between heavy metals and metabolic syndrome using machine learning.

Front Public Health. 2024

本文引用的文献

[1]
Precision screening for familial hypercholesterolaemia: a machine learning study applied to electronic health encounter data.

Lancet Digit Health. 2019-12

[2]
Evaluating a clinical tool (FAMCAT) for identifying familial hypercholesterolaemia in primary care: a retrospective cohort study.

BJGP Open. 2020-12-15

[3]
Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness.

BMJ. 2020-3-20

[4]
Detection of familial hypercholesterolaemia: external validation of the FAMCAT clinical case-finding algorithm to identify patients in primary care.

Lancet Public Health. 2019-5

[5]
Screening for familial hypercholesterolaemia in primary care: Time for general practice to play its part.

Atherosclerosis. 2018-10

[6]
Improving identification and management of familial hypercholesterolaemia in primary care: Pre- and post-intervention study.

Atherosclerosis. 2018-4-30

[7]
Performing studies using the UK Clinical Practice Research Datalink: to link or not to link?

Eur J Epidemiol. 2018-4-4

[8]
Deep Learning and Its Applications in Biomedicine.

Genomics Proteomics Bioinformatics. 2018-3-6

[9]
Estimating the prevalence of heterozygous familial hypercholesterolaemia: a systematic review and meta-analysis.

BMJ Open. 2017-9-1

[10]
Can machine-learning improve cardiovascular risk prediction using routine clinical data?

PLoS One. 2017-4-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索