Suppr超能文献

用于骨再生的金、钯和磁赤铁矿纳米功能化羟基磷灰石支架

Au, Pd and maghemite nanofunctionalized hydroxyapatite scaffolds for bone regeneration.

作者信息

Calabrese Giovanna, Petralia Salvatore, Fabbi Claudia, Forte Stefano, Franco Domenico, Guglielmino Salvatore, Esposito Emanuela, Cuzzocrea Salvatore, Traina Francesco, Conoci Sabrina

机构信息

Department of Chemistry Biology Pharmacy and Environmental Science, University of Messina, Piazza Pugliatti, 1, 98122 Messina, Sicilia, Italy.

Research and Development, Applied Chemical Works, Paternò, Catania, Italy.

出版信息

Regen Biomater. 2020 Aug 27;7(5):461-469. doi: 10.1093/rb/rbaa033. eCollection 2020 Oct.

Abstract

Nanotechnology plays a key role in the development of innovative scaffolds for bone tissue engineering (BTE) allowing the incorporation of nanomaterials able to improve cell proliferation and differentiation. In this study, Mg-HA-Coll type I scaffolds (Mg-HA-based scaffolds) were nanofunctionalized with gold nanorods (Au NRs), palladium nanoparticles (Pd NPs) and maghemite nanoparticles (MAG NPs). Nanofunctionalized Mg-HA-based scaffolds (NF-HA-Ss) were tested for their ability to promote both the proliferation and the differentiation of adipose-derived mesenchymal stem cells (hADSCs). Results clearly highlight that MAG nanofunctionalization substantially improves cell proliferation up to 70% compared with the control (Mg-HA-based scaffold), whereas both Au NRs and Pd NPs nanofunctionalization induce a cell growth inhibition of 94% and 89%, respectively. Similar evidences were found for the osteoinductive properties showing relevant calcium deposits (25% higher than the control) for MAG nanofunctionalization, while a decreasing of cell differentiation (20% lower than the control) for both Au NRs and Pd NPs derivatization. These results are in agreement with previous studies that found cytotoxic effects for both Pd NPs and Au NRs. The excellent improvement of both osteoconductivity and osteoinductivity of the MAG NF-HA-S could be attributed to the high intrinsic magnetic field of superparamagnetic MAG NPs. These findings may pave the way for the development of innovative nanostructured scaffolds for BTE.

摘要

纳米技术在骨组织工程(BTE)创新支架的开发中起着关键作用,使能够改善细胞增殖和分化的纳米材料得以融入。在本研究中,Mg-HA-I型胶原支架(基于Mg-HA的支架)用金纳米棒(Au NRs)、钯纳米颗粒(Pd NPs)和磁赤铁矿纳米颗粒(MAG NPs)进行了纳米功能化。对纳米功能化的基于Mg-HA的支架(NF-HA-Ss)促进脂肪来源间充质干细胞(hADSCs)增殖和分化的能力进行了测试。结果清楚地表明,与对照(基于Mg-HA的支架)相比,MAG纳米功能化显著提高细胞增殖达70%,而Au NRs和Pd NPs纳米功能化分别导致细胞生长抑制94%和89%。在骨诱导特性方面也发现了类似的证据,MAG纳米功能化显示出相关的钙沉积(比对照高25%),而Au NRs和Pd NPs衍生化均导致细胞分化降低(比对照低20%)。这些结果与先前发现Pd NPs和Au NRs均具有细胞毒性作用的研究一致。MAG NF-HA-S的骨传导性和骨诱导性的优异改善可能归因于超顺磁性MAG NPs的高固有磁场。这些发现可能为BTE创新纳米结构支架的开发铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b39/7597806/c97ccbe57771/rbaa033f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验