Suppr超能文献

用于快照三维显微镜的全场光谱域光学干涉测量法。

Full-field spectral-domain optical interferometry for snapshot three-dimensional microscopy.

作者信息

Iyer Rishyashring R, Žurauskas Mantas, Cui Qi, Gao Liang, Theodore Smith R, Boppart Stephen A

机构信息

Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

Biomed Opt Express. 2020 Sep 28;11(10):5903-5919. doi: 10.1364/BOE.402796. eCollection 2020 Oct 1.

Abstract

Prevalent techniques in label-free linear optical microscopy are either confined to imaging in two dimensions or rely on scanning, both of which restrict their applications in imaging subtle biological dynamics. In this paper, we present the theoretical basis along with demonstrations supporting that full-field spectral-domain interferometry can be used for imaging samples in 3D with no moving parts in a single shot. Consequently, we propose a novel optical imaging modality that combines low-coherence interferometry with hyperspectral imaging using a light-emitting diode and an image mapping spectrometer, called Snapshot optical coherence microscopy (OCM). Having first proved the feasibility of Snapshot OCM through theoretical modeling and a comprehensive simulation, we demonstrate an implementation of the technique using off-the-shelf components capable of capturing an entire volume in 5 ms. The performance of Snapshot OCM, when imaging optical targets, shows its capability to axially localize and section images over an axial range of ±10 µm, while maintaining a transverse resolution of 0.8 µm, an axial resolution of 1.4 µm, and a sensitivity of up to 80 dB. Additionally, its performance in imaging weakly scattering live cells shows its capability to not only localize the cells in a densely populated culture but also to generate detailed phase profiles of the structures at each depth for long durations. Consolidating the advantages of several widespread optical microscopy modalities, Snapshot OCM has the potential to be a versatile imaging technique for a broad range of applications.

摘要

无标记线性光学显微镜中的现有技术要么局限于二维成像,要么依赖扫描,这两者都限制了它们在成像细微生物动态方面的应用。在本文中,我们阐述了理论基础,并通过演示证明了全场光谱域干涉测量法可用于单次对三维样本成像且无需移动部件。因此,我们提出了一种新型光学成像模式,即结合低相干干涉测量法与使用发光二极管和图像映射光谱仪的高光谱成像,称为快照光学相干显微镜(OCM)。我们首先通过理论建模和全面模拟证明了快照OCM的可行性,然后展示了使用现成组件对该技术的实现,这些组件能够在5毫秒内捕获整个体积。快照OCM在对光学目标成像时的性能表明,它能够在±10 µm的轴向范围内进行轴向定位和切片成像,同时保持横向分辨率为0.8 µm、轴向分辨率为1.4 µm以及高达80 dB的灵敏度。此外,它在对弱散射活细胞成像时的性能表明,它不仅能够在密集培养物中定位细胞,还能够长时间生成每个深度处结构的详细相位分布图。整合了几种广泛应用的光学显微镜模式的优点,快照OCM有潜力成为一种适用于广泛应用的通用成像技术。

相似文献

1
Full-field spectral-domain optical interferometry for snapshot three-dimensional microscopy.
Biomed Opt Express. 2020 Sep 28;11(10):5903-5919. doi: 10.1364/BOE.402796. eCollection 2020 Oct 1.
2
Bichromatic tetraphasic full-field optical coherence microscopy.
J Biomed Opt. 2024 Jun;29(Suppl 2):S22704. doi: 10.1117/1.JBO.29.S2.S22704. Epub 2024 Mar 25.
4
Ultrahigh speed spectral-domain optical coherence microscopy.
Biomed Opt Express. 2013 Jul 1;4(8):1236-54. doi: 10.1364/BOE.4.001236. eCollection 2013.
9
Computed optical interferometric tomography for high-speed volumetric cellular imaging.
Biomed Opt Express. 2014 Aug 8;5(9):2988-3000. doi: 10.1364/BOE.5.002988. eCollection 2014 Sep 1.
10
Tunable image-mapping optical coherence tomography.
Biomed Opt Express. 2023 Jan 5;14(2):627-638. doi: 10.1364/BOE.477646. eCollection 2023 Feb 1.

引用本文的文献

1
Three-dimensional dynamic optical coherence tomography for breast tumor margin assessment.
Biomed Opt Express. 2025 Jul 7;16(8):3061-3074. doi: 10.1364/BOE.563044. eCollection 2025 Aug 1.
2
Bichromatic tetraphasic full-field optical coherence microscopy.
J Biomed Opt. 2024 Jun;29(Suppl 2):S22704. doi: 10.1117/1.JBO.29.S2.S22704. Epub 2024 Mar 25.
3
recognizes the 2023 best paper prize winners: editorial.
Biomed Opt Express. 2024 Jan 26;15(2):1148-1149. doi: 10.1364/BOE.519386. eCollection 2024 Feb 1.
4
Optical tomography in a single camera frame using fringe-encoded deep-learning full-field OCT.
Biomed Opt Express. 2023 Dec 14;15(1):222-236. doi: 10.1364/BOE.506664. eCollection 2024 Jan 1.
5
Tunable image-mapping optical coherence tomography.
Biomed Opt Express. 2023 Jan 5;14(2):627-638. doi: 10.1364/BOE.477646. eCollection 2023 Feb 1.
6
Tunable image projection spectrometry.
Biomed Opt Express. 2022 Nov 15;13(12):6457-6469. doi: 10.1364/BOE.477752. eCollection 2022 Dec 1.
7
Snapshot hyperspectral light field tomography.
Optica. 2021 Dec 20;8(12):1552-1558. doi: 10.1364/optica.440074. Epub 2021 Dec 8.
9
10
Simultaneous 4-phase-shifted full-field optical coherence microscopy.
Biomed Opt Express. 2021 Jan 22;12(2):981-992. doi: 10.1364/BOE.417183. eCollection 2021 Feb 1.

本文引用的文献

1
Development of a fast calibration method for image mapping spectrometry.
Appl Opt. 2020 Jul 10;59(20):6062-6069. doi: 10.1364/AO.395988.
2
Snapshot hyperspectral light field imaging using image mapping spectrometry.
Opt Lett. 2020 Feb 1;45(3):772-775. doi: 10.1364/OL.382088.
3
Spatiotemporal optical coherence (STOC) manipulation suppresses coherent cross-talk in full-field swept-source optical coherence tomography.
Biomed Opt Express. 2019 Mar 26;10(4):2032-2054. doi: 10.1364/BOE.10.002032. eCollection 2019 Apr 1.
4
A compact high-speed full-field optical coherence microscope for high-resolution in vivo skin imaging.
J Biophotonics. 2019 Feb;12(2):e201800208. doi: 10.1002/jbio.201800208. Epub 2018 Oct 22.
5
Visible-light optical coherence tomography: a review.
J Biomed Opt. 2017 Dec;22(12):1-14. doi: 10.1117/1.JBO.22.12.121707.
6
Gradient light interference microscopy for 3D imaging of unlabeled specimens.
Nat Commun. 2017 Aug 8;8(1):210. doi: 10.1038/s41467-017-00190-7.
8
Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography.
Biomed Opt Express. 2017 Jun 20;8(7):3343-3359. doi: 10.1364/BOE.8.003343. eCollection 2017 Jul 1.
9
In-vivo retinal imaging with off-axis full-field time-domain optical coherence tomography.
Opt Lett. 2016 Nov 1;41(21):4987-4990. doi: 10.1364/OL.41.004987.
10
High-resolution full-field optical coherence microscopy using a broadband light-emitting diode.
Opt Express. 2016 May 2;24(9):9922-31. doi: 10.1364/OE.24.009922.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验