Suppr超能文献

用于无标记亚细胞断层成像的可见光谱扩展聚焦光学相干显微镜。

Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography.

作者信息

Marchand Paul J, Bouwens Arno, Szlag Daniel, Nguyen David, Descloux Adrien, Sison Miguel, Coquoz Séverine, Extermann Jérôme, Lasser Theo

机构信息

Laboratoire d'Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

出版信息

Biomed Opt Express. 2017 Jun 20;8(7):3343-3359. doi: 10.1364/BOE.8.003343. eCollection 2017 Jul 1.

Abstract

We present a novel extended-focus optical coherence microscope (OCM) attaining 0.7 μm axial and 0.4 μm lateral resolution maintained over a depth of 40 μm, while preserving the advantages of Fourier domain OCM. Our system uses an ultra-broad spectrum from a supercontinuum laser source. As the spectrum spans from near-infrared to visible wavelengths (240 nm in bandwidth), we call the system visOCM. The combination of such a broad spectrum with a high-NA objective creates an almost isotropic 3D submicron resolution. We analyze the imaging performance of visOCM on microbead samples and demonstrate its image quality on cell cultures and ex-vivo brain tissue of both healthy and alzheimeric mice. In addition to neuronal cell bodies, fibers and plaques, visOCM imaging of brain tissue reveals fine vascular structures and sub-cellular features through its high spatial resolution. Sub-cellular structures were also observed in live cells and were further revealed through a protocol traditionally used for OCT angiography.

摘要

我们展示了一种新型的扩展焦深光学相干显微镜(OCM),其轴向分辨率达到0.7μm,横向分辨率达到0.4μm,在40μm的深度范围内保持不变,同时保留了傅里叶域OCM的优势。我们的系统使用超连续激光源产生的超宽光谱。由于该光谱范围从近红外到可见光波长(带宽为240nm),我们将该系统称为visOCM。如此宽的光谱与高数值孔径物镜相结合,可实现几乎各向同性的三维亚微米分辨率。我们分析了visOCM对微珠样品的成像性能,并展示了其在健康和患阿尔茨海默病小鼠的细胞培养物和离体脑组织上的图像质量。除了神经元细胞体、纤维和斑块外,脑组织的visOCM成像通过其高空间分辨率揭示了精细的血管结构和亚细胞特征。在活细胞中也观察到了亚细胞结构,并通过传统用于光学相干断层扫描血管造影的方案进一步揭示。

相似文献

1
Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography.
Biomed Opt Express. 2017 Jun 20;8(7):3343-3359. doi: 10.1364/BOE.8.003343. eCollection 2017 Jul 1.
2
Label-free three-dimensional imaging of Caenorhabditis elegans with visible optical coherence microscopy.
PLoS One. 2017 Jul 20;12(7):e0181676. doi: 10.1371/journal.pone.0181676. eCollection 2017.
6
Full-field optical coherence microscopy with optimized ultrahigh spatial resolution.
Opt Lett. 2015 Nov 15;40(22):5347-50. doi: 10.1364/OL.40.005347.
7
3D in vivo imaging with extended-focus optical coherence microscopy.
J Biophotonics. 2017 Nov;10(11):1411-1420. doi: 10.1002/jbio.201700008. Epub 2017 Apr 18.
8
Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography.
Opt Express. 2013 Jul 29;21(15):17711-29. doi: 10.1364/OE.21.017711.
10
Computed optical coherence microscopy of mouse brain ex vivo.
J Biomed Opt. 2019 Nov;24(11):1-18. doi: 10.1117/1.JBO.24.11.116002.

引用本文的文献

1
Visible-light optical coherence tomography and its applications.
Neurophotonics. 2025 Apr;12(2):020601. doi: 10.1117/1.NPh.12.2.020601. Epub 2025 Apr 9.
2
Computational approach for correcting defocus and suppressing speckle noise in line-field optical coherence tomography images.
Biomed Opt Express. 2024 Aug 23;15(9):5491-5504. doi: 10.1364/BOE.530569. eCollection 2024 Sep 1.
3
Probe fusion all-optic OCT-PAM dual-mode imaging system for biomedical imaging.
Photoacoustics. 2024 Jul 1;38:100631. doi: 10.1016/j.pacs.2024.100631. eCollection 2024 Aug.
4
Correcting spatial-spectral crosstalk and chromatic aberrations in broadband line-scan spectral-domain OCT images.
Biomed Opt Express. 2023 Jun 14;14(7):3344-3361. doi: 10.1364/BOE.488881. eCollection 2023 Jul 1.
5
Flexible method for generating needle-shaped beams and its application in optical coherence tomography.
Optica. 2022 Aug 20;9(8):859-867. doi: 10.1364/optica.456894. Epub 2022 Jul 22.
6
Corneal imaging with blue-light optical coherence microscopy.
Biomed Opt Express. 2022 Aug 30;13(9):5004-5014. doi: 10.1364/BOE.465707. eCollection 2022 Sep 1.
7
Intravital 3D visualization and segmentation of murine neural networks at micron resolution.
Sci Rep. 2022 Jul 30;12(1):13130. doi: 10.1038/s41598-022-14450-0.
8
Ultrahigh resolution spectral-domain optical coherence tomography using the 1000-1600 nm spectral band.
Biomed Opt Express. 2022 Mar 8;13(4):1939-1947. doi: 10.1364/BOE.443654. eCollection 2022 Apr 1.
9
Neurophotonic tools for microscopic measurements and manipulation: status report.
Neurophotonics. 2022 Jan;9(Suppl 1):013001. doi: 10.1117/1.NPh.9.S1.013001. Epub 2022 Apr 27.
10
Spectroscopic thermo-elastic optical coherence tomography for tissue characterization.
Biomed Opt Express. 2022 Feb 14;13(3):1430-1446. doi: 10.1364/BOE.447911. eCollection 2022 Mar 1.

本文引用的文献

2
3D Time-lapse Imaging and Quantification of Mitochondrial Dynamics.
Sci Rep. 2017 Feb 23;7:43275. doi: 10.1038/srep43275.
5
Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain.
Biomed Opt Express. 2016 Oct 5;7(11):4400-4414. doi: 10.1364/BOE.7.004400. eCollection 2016 Nov 1.
6
Phase correlation imaging of unlabeled cell dynamics.
Sci Rep. 2016 Sep 12;6:32702. doi: 10.1038/srep32702.
7
10
Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging.
Diabetologia. 2016 Mar;59(3):550-9. doi: 10.1007/s00125-015-3819-x. Epub 2015 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验