文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Synergistic effect of electromagnetic fields and nanomagnetic particles on osteogenesis through calcium channels and p-ERK signaling.

作者信息

Kim Yu-Mi, Lim Han-Moi, Lee Eun-Chul, Ki Ga-Eun, Seo Young-Kwon

机构信息

Department of Medical Biotechnology (BK21 Plus Team), Dongguk University, Goyang-si, Korea.

出版信息

J Orthop Res. 2021 Aug;39(8):1633-1646. doi: 10.1002/jor.24905. Epub 2021 Jan 13.


DOI:10.1002/jor.24905
PMID:33150984
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8451839/
Abstract

Electromagnetic fields (EMFs) are widely used in a number of cell therapies and bone disorder treatments, and nanomagnetic particles (NMPs) also promote cell activity. In this study, we investigated the synergistic effects of EMFs and NMPs on the osteogenesis of the human Saos-2 osteoblast cell line and in a rat calvarial defect model. The Saos-2 cells and critical-size calvarial defects of the rats were exposed to EMF (1 mT, 45 Hz, 8 h/day) with or without Fe O NMPs. Biocompatibility was evaluated with MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and LDH (lactate dehydrogenase) assays. This analysis showed that NMP and EMF did not induce cell toxicity. Quantitative reverse-transcription polymerase chain reaction indicated that the osteogenesis-related markers were highly expressed in the NMP-incorporated Saos-2 cells after exposure to EMF. Also, the expression of gene-encoding proteins involved in calcium channels was activated and the calcium concentration of the NMP-incorporated + EMF-exposed group was increased compared with the control group. In particular, in the NMP-incorporated + EMF-exposed group, all osteogenic proteins were more abundantly expressed than in the control group. This indicated that the NMP incorporation + EMF exposure induced a signaling pathway through activation of p-ERK and calcium channels. Also, in vivo evaluation revealed that rat calvarial defects treated with EMFs and NMPs had good regeneration results with new bone formation and increased mineral density after 6 weeks. Altogether, these results suggest that NMP treatment or EMF exposure of Saos-2 cells can increase osteogenic activity and NMP incorporation following EMF exposure which is synergistically efficient for osteogenesis.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2486/8451839/ce09ae58c78f/JOR-39-1633-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2486/8451839/40a65d059d35/JOR-39-1633-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2486/8451839/aad17975a6de/JOR-39-1633-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2486/8451839/594fa1774a8c/JOR-39-1633-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2486/8451839/ec0030b35459/JOR-39-1633-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2486/8451839/bc6ba3108966/JOR-39-1633-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2486/8451839/5c5b37cd9546/JOR-39-1633-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2486/8451839/f54b4c1edd79/JOR-39-1633-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2486/8451839/bf8c69d56364/JOR-39-1633-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2486/8451839/ce09ae58c78f/JOR-39-1633-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2486/8451839/40a65d059d35/JOR-39-1633-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2486/8451839/aad17975a6de/JOR-39-1633-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2486/8451839/594fa1774a8c/JOR-39-1633-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2486/8451839/ec0030b35459/JOR-39-1633-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2486/8451839/bc6ba3108966/JOR-39-1633-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2486/8451839/5c5b37cd9546/JOR-39-1633-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2486/8451839/f54b4c1edd79/JOR-39-1633-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2486/8451839/bf8c69d56364/JOR-39-1633-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2486/8451839/ce09ae58c78f/JOR-39-1633-g002.jpg

相似文献

[1]
Synergistic effect of electromagnetic fields and nanomagnetic particles on osteogenesis through calcium channels and p-ERK signaling.

J Orthop Res. 2021-8

[2]
Electromagnetic fields and nanomagnetic particles increase the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells.

Int J Mol Med. 2015-1

[3]
Sinusoidal electromagnetic fields accelerate bone regeneration by boosting the multifunctionality of bone marrow mesenchymal stem cells.

Stem Cell Res Ther. 2021-4-13

[4]
Electromagnetic field treatment increases purinergic receptor P2X7 expression and activates its downstream Akt/GSK3β/β-catenin axis in mesenchymal stem cells under osteogenic induction.

Stem Cell Res Ther. 2019-12-21

[5]
Electromagnetic fields promote osteogenesis of rat mesenchymal stem cells through the PKA and ERK1/2 pathways.

J Tissue Eng Regen Med. 2016-10

[6]
Enhancement of osteogenic differentiation of rat adipose tissue-derived mesenchymal stem cells by zinc sulphate under electromagnetic field via the PKA, ERK1/2 and Wnt/β-catenin signaling pathways.

PLoS One. 2017-3-24

[7]
Effect of 1 mT sinusoidal electromagnetic fields on proliferation and osteogenic differentiation of rat bone marrow mesenchymal stromal cells.

Bioelectromagnetics. 2013-9

[8]
Effects of electromagnetic fields treatment on rat critical-sized calvarial defects with a 3D-printed composite scaffold.

Stem Cell Res Ther. 2020-10-6

[9]
Osteogenic differentiation of bone mesenchymal stem cells regulated by osteoblasts under EMF exposure in a co-culture system.

J Huazhong Univ Sci Technolog Med Sci. 2014-4

[10]
Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects.

J Cell Mol Med. 2013-6-26

引用本文的文献

[1]
Insights into bone and cartilage responses to pulsed electromagnetic field stimulation: a review with quantitative comparisons.

Front Bioeng Biotechnol. 2025-7-10

[2]
Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis.

Stem Cell Res Ther. 2023-5-16

[3]
The bioelectrical properties of bone tissue.

Animal Model Exp Med. 2023-4

[4]
Reduction of Osteoclastic Differentiation of Raw 264.7 Cells by EMF Exposure through TRPV4 and p-CREB Pathway.

Int J Mol Sci. 2023-2-4

[5]
Electroactive Biomaterials for Facilitating Bone Defect Repair under Pathological Conditions.

Adv Sci (Weinh). 2023-1

[6]
Effect of Cold Atmospheric Plasma (CAP) on Osteogenic Differentiation Potential of Human Osteoblasts.

Int J Mol Sci. 2022-2-24

本文引用的文献

[1]
Combination Design of Time-Dependent Magnetic Field and Magnetic Nanocomposites to Guide Cell Behavior.

Nanomaterials (Basel). 2020-3-22

[2]
Multimodal Composite Iron Oxide Nanoparticles for Biomedical Applications.

Tissue Eng Regen Med. 2019-10-1

[3]
Preparation and Characterization of Nanocomposite Scaffolds (Collagen/β-TCP/SrO) for Bone Tissue Engineering.

Tissue Eng Regen Med. 2019-3-21

[4]
Role of Mitochondria in the Oxidative Stress Induced by Electromagnetic Fields: Focus on Reproductive Systems.

Oxid Med Cell Longev. 2018-11-8

[5]
The Impact of Metallic Nanoparticles on Stem Cell Proliferation and Differentiation.

Nanomaterials (Basel). 2018-9-26

[6]
3D Biomimetic Magnetic Structures for Static Magnetic Field Stimulation of Osteogenesis.

Int J Mol Sci. 2018-2-7

[7]
Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms.

J Nanobiotechnology. 2017-10-25

[8]
Osteogenic differentiation of bone marrow mesenchymal stem cells by magnetic nanoparticle composite scaffolds under a pulsed electromagnetic field.

Saudi Pharm J. 2017-5

[9]
Size-dependent Effects of Gold Nanoparticles on Osteogenic Differentiation of Human Periodontal Ligament Progenitor Cells.

Theranostics. 2017-3-6

[10]
Effects of Electromagnetic Stimulation on Gene Expression of Mesenchymal Stem Cells and Repair of Bone Lesions.

Cell J. 2017

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索