School of Life Sciences, University of Warwick, Coventry, UK.
Manchester Institute of Biotechnology & Photon Science Institute, The University of Manchester, Manchester, UK.
J Biol Chem. 2021 Jan-Jun;296:100038. doi: 10.1074/jbc.RA120.016019. Epub 2020 Nov 23.
Microbial metabolism of carnitine to trimethylamine (TMA) in the gut can accelerate atherosclerosis and heart disease, and these TMA-producing enzymes are therefore important drug targets. Here, we report the first structures of the carnitine oxygenase CntA, an enzyme of the Rieske oxygenase family. CntA exists in a head-to-tail α trimeric structure. The two functional domains (the Rieske and the catalytic mononuclear iron domains) are located >40 Å apart in the same monomer but adjacent in two neighboring monomers. Structural determination of CntA and subsequent electron paramagnetic resonance measurements uncover the molecular basis of the so-called bridging glutamate (E205) residue in intersubunit electron transfer. The structures of the substrate-bound CntA help to define the substrate pocket. Importantly, a tyrosine residue (Y203) is essential for ligand recognition through a π-cation interaction with the quaternary ammonium group. This interaction between an aromatic residue and quaternary amine substrates allows us to delineate a subgroup of Rieske oxygenases (group V) from the prototype ring-hydroxylating Rieske oxygenases involved in bioremediation of aromatic pollutants in the environment. Furthermore, we report the discovery of the first known CntA inhibitors and solve the structure of CntA in complex with the inhibitor, demonstrating the pivotal role of Y203 through a π-π stacking interaction with the inhibitor. Our study provides the structural and molecular basis for future discovery of drugs targeting this TMA-producing enzyme in human gut.
肠道中肉碱向三甲胺 (TMA) 的微生物代谢会加速动脉粥样硬化和心脏病的发生,因此这些产生 TMA 的酶是重要的药物靶点。在这里,我们报告了 Rieske 氧化酶家族成员肉碱加氧酶 CntA 的首个结构。CntA 以头对头的α三聚体结构存在。两个功能域(Rieske 和催化单核铁域)在同一单体中相隔 >40 Å,但在两个相邻单体中相邻。CntA 的结构测定和随后的电子顺磁共振测量揭示了所谓的桥连谷氨酸(E205)残基在亚基间电子转移中的分子基础。底物结合的 CntA 结构有助于定义底物口袋。重要的是,酪氨酸残基(Y203)通过与季铵基团的π-阳离子相互作用对配体识别至关重要。这种芳族残基与季铵盐底物之间的相互作用使我们能够将 Rieske 氧化酶(第五组)与涉及环境中芳香族污染物生物修复的原型环羟基化 Rieske 氧化酶区分开来。此外,我们还报告了首次发现的 CntA 抑制剂,并解决了 CntA 与抑制剂复合物的结构,通过与抑制剂的π-π 堆积相互作用证明了 Y203 的关键作用。我们的研究为未来针对人类肠道中产生 TMA 的这种酶的药物发现提供了结构和分子基础。