Zhang James G, Huls Anthony J, Palacios Philip M, Guo Yisong, Huang Xiongyi
Department of Chemistry, Johns Hopkins University; Baltimore, Maryland 21218, United States.
Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
J Am Chem Soc. 2024 Dec 18;146(50):34878-34886. doi: 10.1021/jacs.4c14310. Epub 2024 Dec 5.
The trifluoromethyl (-CF) group represents a highly prevalent functionality in pharmaceuticals. Over the past few decades, significant advances have been made in the development of synthetic methods for trifluoromethylation. In contrast, there are currently no metalloenzymes known to catalyze the formation of C(sp)-CF bonds. In this work, we demonstrate that a nonheme iron enzyme, hydroxymandelate synthase from (HMS), is capable of generating CF radicals from hypervalent iodine(III) reagents and directing them for enantioselective alkene trifluoromethyl azidation. A high-throughput screening (HTS) platform based on Staudinger ligation was established, enabling the rapid evaluation of HMS variants for this abiological transformation. The final optimized variant accepts a range of alkene substrates, producing the trifluoromethyl azidation products in up to 73% yield and 96:4 enantiomeric ratio (e.r.). The biocatalytic platform can be further extended to alkene pentafluoroethyl azidation and diazidation by altering the iodine(III) reagent. In addition, anion competition experiments provide insights into the radical rebound process for this abiological transformation. This study not only expands the catalytic repertoire of metalloenzymes for radical transformations but also creates a new enzymatic space for organofluorine synthesis.
三氟甲基(-CF)基团是药物中一种非常常见的官能团。在过去几十年中,三氟甲基化合成方法的发展取得了重大进展。相比之下,目前还没有已知的金属酶能够催化C(sp)-CF键的形成。在这项工作中,我们证明了一种非血红素铁酶,即来自[具体来源]的羟基扁桃酸合酶(HMS),能够从高价碘(III)试剂中产生CF自由基,并将其导向对映选择性烯烃三氟甲基叠氮化反应。基于施陶丁格连接反应建立了一个高通量筛选(HTS)平台,能够快速评估HMS变体在这种非生物转化中的性能。最终优化的变体能够接受一系列烯烃底物,以高达73%的产率和96:4的对映体比例(e.r.)生成三氟甲基叠氮化产物。通过改变碘(III)试剂,该生物催化平台可以进一步扩展到烯烃五氟乙基叠氮化和双叠氮化反应。此外,阴离子竞争实验为这种非生物转化的自由基反弹过程提供了深入了解。这项研究不仅扩展了金属酶在自由基转化方面的催化范围,还为有机氟合成创造了一个新的酶促空间。