Barajas Hugo R, Martínez-Sánchez Shamayim, Romero Miguel F, Álvarez Cristóbal Hernández, Servín-González Luis, Peimbert Mariana, Cruz-Ortega Rocío, García-Oliva Felipe, Alcaraz Luis D
Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Front Microbiol. 2020 Oct 9;11:542742. doi: 10.3389/fmicb.2020.542742. eCollection 2020.
The two-step model for plant root microbiomes considers soil as the primary microbial source. Active selection of the plant's bacterial inhabitants results in a biodiversity decrease toward roots. We collected sixteen samples of ruderal plant roots and their soils and used these soils as the main microbial input for single genotype tomatoes grown in a greenhouse. Our main goal was to test the soil influence in the structuring of rhizosphere microbiomes, minimizing environmental variability, while testing multiple plant species. We massively sequenced the 16S rRNA and shotgun metagenomes of the soils, plants, and tomato roots. We identified a total of 271,940 bacterial operational taxonomic units (OTUs) within the soils, rhizosphere and endospheric microbiomes. We annotated by homology a total of 411,432 (13.07%) of the metagenome predicted proteins. Tomato roots did follow the two-step model with lower α-diversity than soil, while ruderal plants did not. Surprisingly, ruderal plants are probably working as a microenvironmental oasis providing moisture and plant-derived nutrients, supporting larger α-diversity. Ruderal plants and their soils are closer according to their microbiome community composition than tomato and its soil, based on OTUs and protein comparisons. We expected that tomato β-diversity clustered together with their soil, if it is the main rhizosphere microbiome structuring factor. However, tomato microbiome β-diversity was associated with plant genotype in most samples (81.2%), also supported by a larger set of enriched proteins in tomato rhizosphere than soil or ruderals. The most abundant bacteria found in soils was the Actinobacteria , ruderals were dominated by the Proteobacteria sp. URGHD0057, and tomato mainly by the Bacteroidetes , , and We calculated a metagenomic tomato root core of 51 bacterial genera and 2,762 proteins, which could be the basis for microbiome-oriented plant breeding programs. We attributed a larger diversity in ruderal plants roots exudates as an effect of the moisture and nutrient acting as a microbial harbor. The tomato and ruderal metagenomic differences are probably due to plant domestication trade-offs, impacting plant-bacteria interactions.
植物根系微生物群的两步模型认为土壤是主要的微生物来源。植物对其细菌居民的主动选择导致根系生物多样性降低。我们采集了16份杂草植物根系及其土壤样本,并将这些土壤作为温室中种植的单一基因型番茄的主要微生物输入源。我们的主要目标是测试土壤对根际微生物群结构的影响,尽量减少环境变异性,同时测试多种植物物种。我们对土壤、植物和番茄根系的16S rRNA和鸟枪法宏基因组进行了大规模测序。我们在土壤、根际和内生微生物群中总共鉴定出271,940个细菌操作分类单元(OTU)。我们通过同源性注释了宏基因组预测蛋白中的411,432个(13.07%)。番茄根系确实遵循两步模型,其α多样性低于土壤,而杂草植物则不然。令人惊讶的是,杂草植物可能起到了微环境绿洲的作用,提供水分和植物衍生的养分,支持更大的α多样性。根据OTU和蛋白质比较,杂草植物及其土壤在微生物群落组成上比番茄及其土壤更接近。如果土壤是主要的根际微生物群结构因子,我们预计番茄的β多样性会与其土壤聚集在一起。然而,在大多数样本(81.2%)中,番茄微生物群的β多样性与植物基因型相关,番茄根际中富集的蛋白质组也比土壤或杂草植物中的更大,这也支持了这一点。土壤中发现的最丰富细菌是放线菌,杂草植物主要由变形菌门的URGHD0O57菌属主导,而番茄主要由拟杆菌门主导。我们计算出了一个由51个细菌属和2762种蛋白质组成的番茄根宏基因组核心,这可能是面向微生物群的植物育种计划的基础。我们将杂草植物根系分泌物中更大的多样性归因于水分和养分作为微生物栖息地的作用。番茄和杂草植物的宏基因组差异可能是由于植物驯化的权衡,影响了植物与细菌的相互作用。