Suppr超能文献

磁性粒子成像中氧化铁纳米颗粒降解与信号强度之间的复杂关系

Complex Relationship Between Iron Oxide Nanoparticle Degradation and Signal Intensity in Magnetic Particle Imaging.

作者信息

Guzy Julia, Chakravarty Shatadru, Buchanan Foster J, Chen Haoran, Gaudet Jeffrey M, Hix Jeremy M L, Mallett Christiane L, Shapiro Erik M

机构信息

Department of Radiology and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA.

Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA.

出版信息

ACS Appl Nano Mater. 2020 May 22;3(5):3991-3999. doi: 10.1021/acsanm.0c00779. Epub 2020 Apr 23.

Abstract

Magnetic particle imaging (MPI), using superparamagnetic nanoparticles as an imaging tracer, is touted as a quantitative biomedical imaging technology, but MPI signal properties have never been characterized for magnetic nanoparticles undergoing biodegradation. We show that MPI signal properties can increase or decrease as iron oxide nanoparticles degrade, depending on the nanoparticle formulation and nanocrystal size, and degradation rate and mechanism. Further, we show that long-term in vitro MPI experiments only roughly approximate long-term in vivo MPI signal properties. Further, we demonstrate for the first time, an environmentally sensitive MPI contrast mechanism opening the door to smart contrast paradigms in MPI.

摘要

磁粒子成像(MPI)利用超顺磁性纳米颗粒作为成像示踪剂,被誉为一种定量生物医学成像技术,但对于正在经历生物降解的磁性纳米颗粒,MPI信号特性从未得到过表征。我们发现,随着氧化铁纳米颗粒的降解,MPI信号特性可能会增加或减少,这取决于纳米颗粒的配方、纳米晶体尺寸、降解速率和机制。此外,我们还表明,长期体外MPI实验只能大致模拟长期体内MPI信号特性。此外,我们首次证明了一种对环境敏感的MPI对比机制,为MPI中的智能对比模式打开了大门。

相似文献

1
Complex Relationship Between Iron Oxide Nanoparticle Degradation and Signal Intensity in Magnetic Particle Imaging.
ACS Appl Nano Mater. 2020 May 22;3(5):3991-3999. doi: 10.1021/acsanm.0c00779. Epub 2020 Apr 23.
2
Application of magnetic particle imaging to evaluate nanoparticle fate in rodent joints.
J Control Release. 2023 Apr;356:347-359. doi: 10.1016/j.jconrel.2023.02.038. Epub 2023 Mar 10.
4
Superparamagnetic iron oxides as MPI tracers: A primer and review of early applications.
Adv Drug Deliv Rev. 2019 Jan 1;138:293-301. doi: 10.1016/j.addr.2018.12.007. Epub 2018 Dec 13.
5
Highly Stable Amine Functionalized Iron Oxide Nanoparticles Designed for Magnetic Particle Imaging (MPI).
IEEE Trans Magn. 2013 Jul;49(7):3500-3503. doi: 10.1109/TMAG.2013.2245110.
6
Optimization of Iron Oxide Tracer Synthesis for Magnetic Particle Imaging.
Nanomaterials (Basel). 2018 Mar 21;8(4):180. doi: 10.3390/nano8040180.
8
In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents.
Biomaterials. 2015 Jun;52:251-61. doi: 10.1016/j.biomaterials.2015.02.040. Epub 2015 Feb 28.
9
Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI).
Int J Mol Sci. 2013 Sep 11;14(9):18682-710. doi: 10.3390/ijms140918682.
10
Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance.
J Nanobiotechnology. 2020 Jan 28;18(1):22. doi: 10.1186/s12951-020-0580-1.

引用本文的文献

2
Elucidating Iron Metabolism through Molecular Imaging.
Curr Issues Mol Biol. 2024 Mar 22;46(4):2798-2818. doi: 10.3390/cimb46040175.
3
Application of magnetic particle imaging to evaluate nanoparticle fate in rodent joints.
J Control Release. 2023 Apr;356:347-359. doi: 10.1016/j.jconrel.2023.02.038. Epub 2023 Mar 10.
4
Tracking the fates of iron-labeled tumor cells using magnetic particle imaging.
Nanoscale Adv. 2022 Jul 25;4(17):3617-3623. doi: 10.1039/d2na00008c. eCollection 2022 Aug 23.
5
Applications of Magnetic Particle Imaging in Biomedicine: Advancements and Prospects.
Front Physiol. 2022 Jul 1;13:898426. doi: 10.3389/fphys.2022.898426. eCollection 2022.
6
3D Magnetic Particle Imaging of Human Stem Cell-Derived Islet Organoid Transplantation Using a Machine Learning Algorithm.
Front Cell Dev Biol. 2021 Aug 12;9:704483. doi: 10.3389/fcell.2021.704483. eCollection 2021.
8
A Perspective on Cell Tracking with Magnetic Particle Imaging.
Tomography. 2020 Dec;6(4):315-324. doi: 10.18383/j.tom.2020.00043.

本文引用的文献

1
Quantitative Drug Release Monitoring in Tumors of Living Subjects by Magnetic Particle Imaging Nanocomposite.
Nano Lett. 2019 Oct 9;19(10):6725-6733. doi: 10.1021/acs.nanolett.9b01202. Epub 2019 Sep 25.
2
Impact of magnetic nanoparticle surface coating on their long-term intracellular biodegradation in stem cells.
Nanoscale. 2019 Sep 21;11(35):16488-16498. doi: 10.1039/c9nr05624f. Epub 2019 Aug 27.
3
Magnetic Particle Imaging: Current Applications in Biomedical Research.
J Magn Reson Imaging. 2020 Jun;51(6):1659-1668. doi: 10.1002/jmri.26875. Epub 2019 Jul 22.
4
Pulsed Excitation in Magnetic Particle Imaging.
IEEE Trans Med Imaging. 2019 Oct;38(10):2389-2399. doi: 10.1109/TMI.2019.2898202. Epub 2019 Feb 11.
5
Superparamagnetic iron oxides as MPI tracers: A primer and review of early applications.
Adv Drug Deliv Rev. 2019 Jan 1;138:293-301. doi: 10.1016/j.addr.2018.12.007. Epub 2018 Dec 13.
6
In vivo tracking and quantification of inhaled aerosol using magnetic particle imaging towards inhaled therapeutic monitoring.
Theranostics. 2018 Jun 8;8(13):3676-3687. doi: 10.7150/thno.26608. eCollection 2018.
8
The Relaxation Wall: Experimental Limits to Improving MPI Spatial Resolution by Increasing Nanoparticle Core size.
Biomed Phys Eng Express. 2017 Jun;3(3). doi: 10.1088/2057-1976/aa6ab6. Epub 2017 Apr 27.
9
SPIONs for cell labelling and tracking using MRI: magnetite or maghemite?
Biomater Sci. 2017 Dec 19;6(1):101-106. doi: 10.1039/c7bm00515f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验