文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用抗体功能化磁性粒子成像示踪剂实现对炎症部位中性粒细胞的非放射性、灵敏追踪。

Non-radioactive and sensitive tracking of neutrophils towards inflammation using antibody functionalized magnetic particle imaging tracers.

机构信息

Department of Bioengineering, University of California, Berkeley, California 94720, United States.

UC Berkeley-UCSF Graduate Group in Bioengineering, California, United States.

出版信息

Nanotheranostics. 2021 Feb 12;5(2):240-255. doi: 10.7150/ntno.50721. eCollection 2021.


DOI:10.7150/ntno.50721
PMID:33614400
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7893534/
Abstract

White blood cells (WBCs) are a key component of the mammalian immune system and play an essential role in surveillance, defense, and adaptation against foreign pathogens. Apart from their roles in the active combat of infection and the development of adaptive immunity, immune cells are also involved in tumor development and metastasis. Antibody-based therapeutics have been developed to regulate (i.e. selectively activate or inhibit immune function) and harness immune cells to fight malignancy. Alternatively, non-invasive tracking of WBC distribution can diagnose inflammation, infection, fevers of unknown origin (FUOs), and cancer. Magnetic Particle Imaging (MPI) is a non-invasive, non-radioactive, and sensitive medical imaging technique that uses safe superparamagnetic iron oxide nanoparticles (SPIOs) as tracers. MPI has previously been shown to track therapeutic stem cells for over 87 days with a ~200 cell detection limit. In the current work, we utilized antibody-conjugated SPIOs specific to neutrophils for labeling, and non-invasive and radiation-free tracking of these inflammatory cells to sites of infection and inflammation in an murine model of lipopolysaccharide-induced myositis. MPI showed sensitive detection of inflammation with a contrast-to-noise ratio of ~8-13.

摘要

白细胞(WBC)是哺乳动物免疫系统的关键组成部分,在监视、防御和适应外来病原体方面发挥着重要作用。除了在感染的主动防御和适应性免疫的发展中的作用外,免疫细胞也参与肿瘤的发展和转移。已经开发了基于抗体的疗法来调节(即选择性激活或抑制免疫功能)和利用免疫细胞来对抗恶性肿瘤。此外,还可以通过非侵入性跟踪白细胞分布来诊断炎症、感染、不明原因发热(FUO)和癌症。磁性粒子成像(MPI)是一种非侵入性、非放射性和敏感的医学成像技术,使用安全的超顺磁性氧化铁纳米粒子(SPIOs)作为示踪剂。MPI 此前已经显示可以跟踪治疗性干细胞超过 87 天,检测限约为 200 个细胞。在当前的工作中,我们利用针对中性粒细胞的抗体偶联 SPIOs 进行标记,并在脂多糖诱导的肌炎的小鼠模型中对这些炎症细胞进行非侵入性和无辐射跟踪,以追踪感染和炎症部位。MPI 显示出对炎症的敏感检测,对比噪声比约为 8-13。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/27ec7afa79b1/ntnov05p0240g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/c1152ed94fce/ntnov05p0240g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/b1838cb52583/ntnov05p0240g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/84e699b8b39c/ntnov05p0240g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/10c075e8c9c9/ntnov05p0240g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/a28121b58bb0/ntnov05p0240g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/117363b50c6c/ntnov05p0240g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/e273250e07ef/ntnov05p0240g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/6d2d0c708c73/ntnov05p0240g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/426373a21db4/ntnov05p0240g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/b34dcaf85b10/ntnov05p0240g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/27ec7afa79b1/ntnov05p0240g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/c1152ed94fce/ntnov05p0240g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/b1838cb52583/ntnov05p0240g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/84e699b8b39c/ntnov05p0240g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/10c075e8c9c9/ntnov05p0240g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/a28121b58bb0/ntnov05p0240g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/117363b50c6c/ntnov05p0240g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/e273250e07ef/ntnov05p0240g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/6d2d0c708c73/ntnov05p0240g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/426373a21db4/ntnov05p0240g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/b34dcaf85b10/ntnov05p0240g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8276/7893534/27ec7afa79b1/ntnov05p0240g011.jpg

相似文献

[1]
Non-radioactive and sensitive tracking of neutrophils towards inflammation using antibody functionalized magnetic particle imaging tracers.

Nanotheranostics. 2021

[2]
Magnetic particle imaging for radiation-free, sensitive and high-contrast vascular imaging and cell tracking.

Curr Opin Chem Biol. 2018-5-10

[3]
A perspective on a rapid and radiation-free tracer imaging modality, magnetic particle imaging, with promise for clinical translation.

Br J Radiol. 2018-11

[4]
Magnetic particle imaging (MPI) for NMR and MRI researchers.

J Magn Reson. 2012-12-27

[5]
Quantitative "Hot Spot" Imaging of Transplanted Stem Cells using Superparamagnetic Tracers and Magnetic Particle Imaging (MPI).

Tomography. 2015-12

[6]
Trimodal Cell Tracking In Vivo: Combining Iron- and Fluorine-Based Magnetic Resonance Imaging with Magnetic Particle Imaging to Monitor the Delivery of Mesenchymal Stem Cells and the Ensuing Inflammation.

Tomography. 2019-12

[7]
Magnetic Particle Imaging: Current Applications in Biomedical Research.

J Magn Reson Imaging. 2020-6

[8]
Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality.

Nanoscale. 2022-3-10

[9]
Sensitive and specific detection of breast cancer lymph node metastasis through dual-modality magnetic particle imaging and fluorescence molecular imaging: a preclinical evaluation.

Eur J Nucl Med Mol Imaging. 2022-7

[10]
Magnetic microspheres can be used for magnetic particle imaging of cancer cells arrested in the mouse brain.

Magn Reson Med. 2022-1

引用本文的文献

[1]
Principles and applications of magnetic nanomaterials in magnetically guided bioimaging.

Mater Today Phys. 2023-3

[2]
Flame-Made Doped Iron Oxide Nanoparticles as Tracers for Magnetic Particle Imaging.

Chem Mater. 2025-5-20

[3]
Exploring the diagnostic potential: magnetic particle imaging for brain diseases.

Mil Med Res. 2025-4-27

[4]
Stimuli-Responsive Nanomedicines for the Treatment of Non-cancer Related Inflammatory Diseases.

ACS Nano. 2025-4-29

[5]
Current status and future prospects of molecular imaging in targeting the tumor immune microenvironment.

Front Immunol. 2025-1-22

[6]
On the partial volume effect in magnetic particle imaging.

Phys Med Biol. 2025-2-4

[7]
High-efficiency magnetophoretic labelling of adoptively-transferred T cells for longitudinal Magnetic Particle Imaging.

Theranostics. 2024

[8]
Roadmap on magnetic nanoparticles in nanomedicine.

Nanotechnology. 2024-11-5

[9]
ISMRM Clinical Focus Meeting 2023: "Imaging the Fire in the Brain".

J Magn Reson Imaging. 2025-4

[10]
Tomographic Magnetic Particle Imaging With a Single-Sided Field-Free Line Scanner.

IEEE Trans Biomed Eng. 2024-12

本文引用的文献

[1]
Tracking adoptive T cell immunotherapy using magnetic particle imaging.

Nanotheranostics. 2021

[2]
Combining magnetic particle imaging and magnetic fluid hyperthermia for localized and image-guided treatment.

Int J Hyperthermia. 2020-12

[3]
Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles.

Theranostics. 2021

[4]
A Perspective on Cell Tracking with Magnetic Particle Imaging.

Tomography. 2020-12

[5]
Mind Over Magnets - How Magnetic Particle Imaging is Changing the Way We Think About the Future of Neuroscience.

Neuroscience. 2021-10-15

[6]
Complex Relationship Between Iron Oxide Nanoparticle Degradation and Signal Intensity in Magnetic Particle Imaging.

ACS Appl Nano Mater. 2020-5-22

[7]
Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications.

Theranostics. 2020

[8]
Magnetic Particle Imaging of Macrophages Associated with Cancer: Filling the Voids Left by Iron-Based Magnetic Resonance Imaging.

Mol Imaging Biol. 2020-8

[9]
Optimization of Drive Parameters for Resolution, Sensitivity and Safety in Magnetic Particle Imaging.

IEEE Trans Med Imaging. 2020-5

[10]
Theranostic nanocarriers combining high drug loading and magnetic particle imaging.

Int J Pharm. 2019-10-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索