Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong.
Int J Mol Sci. 2013 Sep 11;14(9):18682-710. doi: 10.3390/ijms140918682.
Magnetic particle imaging (MPI) is a promising medical imaging technique producing quantitative images of the distribution of tracer materials (superparamagnetic nanoparticles) without interference from the anatomical background of the imaging objects (either phantoms or lab animals). Theoretically, the MPI platform can image with relatively high temporal and spatial resolution and sensitivity. In practice, the quality of the MPI images hinges on both the applied magnetic field and the properties of the tracer nanoparticles. Langevin theory can model the performance of superparamagnetic nanoparticles and predict the crucial influence of nanoparticle core size on the MPI signal. In addition, the core size distribution, anisotropy of the magnetic core and surface modification of the superparamagnetic nanoparticles also determine the spatial resolution and sensitivity of the MPI images. As a result, through rational design of superparamagnetic nanoparticles, the performance of MPI could be effectively optimized. In this review, the performance of superparamagnetic nanoparticles in MPI is investigated. Rational synthesis and modification of superparamagnetic nanoparticles are discussed and summarized. The potential medical application areas for MPI, including cardiovascular system, oncology, stem cell tracking and immune related imaging are also analyzed and forecasted.
磁性粒子成像(MPI)是一种很有前途的医学成像技术,可产生示踪材料(超顺磁纳米粒子)分布的定量图像,而不会受到成像物体(无论是体模还是实验动物)解剖背景的干扰。从理论上讲,MPI 平台可以具有较高的时间和空间分辨率和灵敏度进行成像。实际上,MPI 图像的质量取决于所施加的磁场和示踪纳米粒子的特性。朗之万理论可以模拟超顺磁纳米粒子的性能,并预测纳米粒子核心尺寸对 MPI 信号的关键影响。此外,核尺寸分布、磁核各向异性和超顺磁纳米粒子的表面修饰也决定了 MPI 图像的空间分辨率和灵敏度。因此,通过超顺磁纳米粒子的合理设计,可以有效地优化 MPI 的性能。本文综述了 MPI 中超顺磁纳米粒子的性能,讨论并总结了超顺磁纳米粒子的合理合成和修饰。还分析和预测了 MPI 的潜在医学应用领域,包括心血管系统、肿瘤学、干细胞跟踪和免疫相关成像。
Int J Mol Sci. 2013-9-11
Biomaterials. 2013-2-21
Adv Drug Deliv Rev. 2018-12-13
Phys Med Biol. 2022-6-10
J Magn Reson Imaging. 2020-6
Nanoscale. 2017-12-7
Nanomaterials (Basel). 2018-3-21
Mater Today Phys. 2023-3
Nat Rev Bioeng. 2025-3
CNS Neurol Disord Drug Targets. 2025
Int J Stem Cells. 2023-11-30
J Magn Magn Mater. 2009-7
Interv Neurol. 2013-9
Radiol Phys Technol. 2013-7
Biomaterials. 2013-2-21
J Magn Reson. 2012-12-27
Adv Mater. 2012-7-24