文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

超顺磁纳米粒子的设计用于磁粒子成像(MPI)。

Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI).

机构信息

Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong.

出版信息

Int J Mol Sci. 2013 Sep 11;14(9):18682-710. doi: 10.3390/ijms140918682.


DOI:10.3390/ijms140918682
PMID:24030719
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3794803/
Abstract

Magnetic particle imaging (MPI) is a promising medical imaging technique producing quantitative images of the distribution of tracer materials (superparamagnetic nanoparticles) without interference from the anatomical background of the imaging objects (either phantoms or lab animals). Theoretically, the MPI platform can image with relatively high temporal and spatial resolution and sensitivity. In practice, the quality of the MPI images hinges on both the applied magnetic field and the properties of the tracer nanoparticles. Langevin theory can model the performance of superparamagnetic nanoparticles and predict the crucial influence of nanoparticle core size on the MPI signal. In addition, the core size distribution, anisotropy of the magnetic core and surface modification of the superparamagnetic nanoparticles also determine the spatial resolution and sensitivity of the MPI images. As a result, through rational design of superparamagnetic nanoparticles, the performance of MPI could be effectively optimized. In this review, the performance of superparamagnetic nanoparticles in MPI is investigated. Rational synthesis and modification of superparamagnetic nanoparticles are discussed and summarized. The potential medical application areas for MPI, including cardiovascular system, oncology, stem cell tracking and immune related imaging are also analyzed and forecasted.

摘要

磁性粒子成像(MPI)是一种很有前途的医学成像技术,可产生示踪材料(超顺磁纳米粒子)分布的定量图像,而不会受到成像物体(无论是体模还是实验动物)解剖背景的干扰。从理论上讲,MPI 平台可以具有较高的时间和空间分辨率和灵敏度进行成像。实际上,MPI 图像的质量取决于所施加的磁场和示踪纳米粒子的特性。朗之万理论可以模拟超顺磁纳米粒子的性能,并预测纳米粒子核心尺寸对 MPI 信号的关键影响。此外,核尺寸分布、磁核各向异性和超顺磁纳米粒子的表面修饰也决定了 MPI 图像的空间分辨率和灵敏度。因此,通过超顺磁纳米粒子的合理设计,可以有效地优化 MPI 的性能。本文综述了 MPI 中超顺磁纳米粒子的性能,讨论并总结了超顺磁纳米粒子的合理合成和修饰。还分析和预测了 MPI 的潜在医学应用领域,包括心血管系统、肿瘤学、干细胞跟踪和免疫相关成像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad0/3794803/ede9d627a79d/ijms-14-18682f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad0/3794803/f6cc4ddb8760/ijms-14-18682f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad0/3794803/6200bf299786/ijms-14-18682f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad0/3794803/00a4c977c7ba/ijms-14-18682f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad0/3794803/716ff44547c8/ijms-14-18682f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad0/3794803/0445b0ace750/ijms-14-18682f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad0/3794803/60a96cf6d5cf/ijms-14-18682f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad0/3794803/7f86dcebcbdc/ijms-14-18682f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad0/3794803/ede9d627a79d/ijms-14-18682f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad0/3794803/f6cc4ddb8760/ijms-14-18682f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad0/3794803/6200bf299786/ijms-14-18682f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad0/3794803/00a4c977c7ba/ijms-14-18682f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad0/3794803/716ff44547c8/ijms-14-18682f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad0/3794803/0445b0ace750/ijms-14-18682f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad0/3794803/60a96cf6d5cf/ijms-14-18682f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad0/3794803/7f86dcebcbdc/ijms-14-18682f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad0/3794803/ede9d627a79d/ijms-14-18682f8.jpg

相似文献

[1]
Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI).

Int J Mol Sci. 2013-9-11

[2]
Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments.

Med Phys. 2013-7

[3]
Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging.

Biomaterials. 2013-2-21

[4]
Superparamagnetic iron oxides as MPI tracers: A primer and review of early applications.

Adv Drug Deliv Rev. 2018-12-13

[5]
Deep learning for improving the spatial resolution of magnetic particle imaging.

Phys Med Biol. 2022-6-10

[6]
Shape Anisotropy-Governed High-Performance Nanomagnetosol for In Vivo Magnetic Particle Imaging of Lungs.

Small. 2024-2

[7]
Magnetic Particle Imaging: Current Applications in Biomedical Research.

J Magn Reson Imaging. 2020-6

[8]
Tomographic magnetic particle imaging of cancer targeted nanoparticles.

Nanoscale. 2017-12-7

[9]
Optimization of Iron Oxide Tracer Synthesis for Magnetic Particle Imaging.

Nanomaterials (Basel). 2018-3-21

[10]
Low drive field amplitude for improved image resolution in magnetic particle imaging.

Med Phys. 2016-1

引用本文的文献

[1]
Principles and applications of magnetic nanomaterials in magnetically guided bioimaging.

Mater Today Phys. 2023-3

[2]
Imaging-guided precision hyperthermia with magnetic nanoparticles.

Nat Rev Bioeng. 2025-3

[3]
A Compendium of Magnetic Nanoparticle Essentials: A Comprehensive Guide for Beginners and Experts.

Pharmaceutics. 2025-1-20

[4]
Use of Magtrace as an Alternative Approach in Staging the Axilla in Early-Stage Breast Cancer: A Single-Center Experience.

Cureus. 2024-12-3

[5]
A Comprehensive Review on Repurposing the Nanocarriers for the Treatment of Parkinson's Disease: An Updated Patent and Clinical Trials.

CNS Neurol Disord Drug Targets. 2025

[6]
Rapid cellular uptake of citrate-coated iron oxide nanoparticles unaffected by cell-surface glycosaminoglycans.

Nanoscale Adv. 2024-6-13

[7]
Biocatalyst immobilization on magnetic nano-architectures for potential applications in condensation reactions.

Microb Biotechnol. 2024-6

[8]
A comprehensive review on the applications of ferrite nanoparticles in the diagnosis and treatment of breast cancer.

Med Oncol. 2024-1-10

[9]
Stem Cell Imaging Principles and Applications.

Int J Stem Cells. 2023-11-30

[10]
Engineered Protein-Driven Synthesis of Tunable Iron Oxide Nanoparticles as T1 and T2 Magnetic Resonance Imaging Contrast Agents.

Chem Mater. 2022-12-27

本文引用的文献

[1]
Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia.

J Magn Magn Mater. 2009-7

[2]
MR and Targeted Molecular MRI of Vulnerable Plaques.

Interv Neurol. 2013-9

[3]
Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection.

Phys Med Biol. 2013-5-17

[4]
Experimental and simulation studies on the behavior of signal harmonics in magnetic particle imaging.

Radiol Phys Technol. 2013-7

[5]
Iron oxide nanoparticle-micelles (ION-micelles) for sensitive (molecular) magnetic particle imaging and magnetic resonance imaging.

PLoS One. 2013-2-20

[6]
Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging.

Biomaterials. 2013-2-21

[7]
Magnetic particle imaging (MPI) for NMR and MRI researchers.

J Magn Reson. 2012-12-27

[8]
Magnetic particle imaging: visualization of instruments for cardiovascular intervention.

Radiology. 2012-9-20

[9]
X-space MPI: magnetic nanoparticles for safe medical imaging.

Adv Mater. 2012-7-24

[10]
Toward cardiovascular interventions guided by magnetic particle imaging: first instrument characterization.

Magn Reson Med. 2012-7-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索