Manzano Aránzazu, Villacampa Alicia, Sáez-Vásquez Julio, Kiss John Z, Medina F Javier, Herranz Raúl
Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.
iScience. 2020 Oct 15;23(11):101686. doi: 10.1016/j.isci.2020.101686. eCollection 2020 Nov 20.
Understanding plant adaptive responses to the space environment is a requisite for enabling space farming. Spaceflight produces deleterious effects on plant cells, particularly affecting ribosome biogenesis, a complex stress-sensitive process coordinated with cell division and differentiation, known to be activated by red light. Here, in a series of ground studies, we have used mutants from the two nucleolin genes ( and nucleolar regulators of ribosome biogenesis) to better understand their role in adaptive response mechanisms to stress on Earth. Thus, we show that nucleolin stress-related gene can compensate for the environmental stress provided by darkness in plants, whereas plants are not able to provide a complete response to red light. These ground control findings, as part of the ESA/NASA Seedling Growth spaceflight experiments, will determine the basis for the identification of genetic backgrounds enabling an adaptive advantage for plants in future space experiments.
了解植物对空间环境的适应性反应是实现太空种植的必要条件。太空飞行对植物细胞产生有害影响,尤其会影响核糖体生物合成,这是一个与细胞分裂和分化协调的复杂的应激敏感过程,已知该过程可被红光激活。在此,在一系列地面研究中,我们使用了来自两个核仁素基因(核糖体生物合成的核仁调节因子)的突变体,以更好地了解它们在地球应激适应性反应机制中的作用。因此,我们表明,核仁素应激相关基因可以补偿黑暗环境给拟南芥植物带来的环境压力,而水稻植物则无法对红光做出完全反应。作为欧洲航天局/美国国家航空航天局幼苗生长太空飞行实验的一部分,这些地面对照研究结果将为确定能够使植物在未来太空实验中具有适应性优势的遗传背景奠定基础。