Suppr超能文献

用于小儿肺炎检测的CheXNet与VGG - 19特征提取器集成及随机森林分类器

Ensemble of CheXNet and VGG-19 Feature Extractor with Random Forest Classifier for Pediatric Pneumonia Detection.

作者信息

Habib Nahida, Hasan Md Mahmodul, Reza Md Mahfuz, Rahman Mohammad Motiur

机构信息

Department of Computer Science and Engineering (CSE), Mawlana Bhashani Science and Technology University (MBSTU), Santosh, Tangail, 1902 Bangladesh.

Department of Computer Science and Engineering (CSE), Ranada Prasad Shaha University (RPSU), Narayanganj, 1400 Bangladesh.

出版信息

SN Comput Sci. 2020;1(6):359. doi: 10.1007/s42979-020-00373-y. Epub 2020 Oct 30.

Abstract

Pneumonia, an acute respiratory infection, causes serious breathing hindrance by damaging lung/s. Recovery of pneumonia patients depends on the early diagnosis of the disease and proper treatment. This paper proposes an ensemble method-based pneumonia diagnosis from Chest X-ray images. The deep Convolutional Neural Networks (CNNs)-CheXNet and VGG-19 are trained and used to extract features from given X-ray images. These features are then ensembled for classification. To overcome data irregularity problem, Random Under Sampler (RUS), Random Over Sampler (ROS) and Synthetic Minority Oversampling Technique (SMOTE) are applied on the ensembled feature vector. The ensembled feature vector is then classified using several Machine Learning (ML) classification techniques (Random Forest, Adaptive Boosting, K-Nearest Neighbors). Among these methods, Random Forest got better performance metrics than others on the available standard dataset. Comparison with existing methods shows that the proposed method attains improved classification accuracy, AUC values and outperforms all other models providing 98.93% accurate prediction. The model also exhibits potential generalization capacity when tested on different dataset. Outcomes of this study can be great to use for pneumonia diagnosis from chest X-ray images.

摘要

肺炎是一种急性呼吸道感染,通过损害肺部导致严重的呼吸障碍。肺炎患者的康复取决于疾病的早期诊断和适当治疗。本文提出了一种基于集成方法的胸部X光图像肺炎诊断方法。对深度卷积神经网络(CNN)——CheXNet和VGG - 19进行训练,并用于从给定的X光图像中提取特征。然后将这些特征进行集成以进行分类。为了克服数据不均衡问题,对集成特征向量应用随机欠采样(RUS)、随机过采样(ROS)和合成少数类过采样技术(SMOTE)。然后使用几种机器学习(ML)分类技术(随机森林、自适应提升、K近邻)对集成特征向量进行分类。在这些方法中,随机森林在可用的标准数据集上比其他方法获得了更好的性能指标。与现有方法的比较表明,所提出的方法提高了分类准确率、AUC值,并且优于所有其他模型,提供了98.93%的准确预测。该模型在不同数据集上进行测试时也表现出潜在的泛化能力。本研究的结果对于利用胸部X光图像进行肺炎诊断可能非常有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f0/7597433/9d5fe2a44881/42979_2020_373_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验