Suppr超能文献

处理COVID-19胸部X光图像分类中的类别不平衡问题:使用SMOTE和加权损失

Handling class imbalance in COVID-19 chest X-ray images classification: Using SMOTE and weighted loss.

作者信息

Chamseddine Ekram, Mansouri Nesrine, Soui Makram, Abed Mourad

机构信息

SIME Laboratory, National School of Engineers of Tunis, University of Tunis, Tunisia.

Artificial Intelligence Research Unit, National School of Computer Sciences, University of Manouba, Tunisia.

出版信息

Appl Soft Comput. 2022 Nov;129:109588. doi: 10.1016/j.asoc.2022.109588. Epub 2022 Aug 29.

Abstract

Healthcare systems worldwide have been struggling since the beginning of the COVID-19 pandemic. The early diagnosis of this unprecedented infection has become their ultimate objective. Detecting positive patients from chest X-ray images is a quick and efficient solution for overloaded hospitals. Many studies based on deep learning (DL) techniques have shown high performance in classifying COVID-19 chest X-ray images. However, most of these studies suffer from a class imbalance problem mainly due to the limited number of COVID-19 samples. Such a problem may significantly reduce the efficiency of DL classifiers. In this work, we aim to build an accurate model that assists clinicians in the early diagnosis of COVID-19 using balanced data. To this end, we trained six state-of-the-art convolutional neural networks (CNNs) via transfer learning (TL) on three different COVID-19 datasets. The models were developed to perform a multi-classification task that distinguishes between COVID-19, normal, and viral pneumonia cases. To address the class imbalance issue, we first investigated the Weighted Categorical Loss (WCL) and then the Synthetic Minority Oversampling Technique (SMOTE) on each dataset separately. After a comparative study of the obtained results, we selected the model that achieved high classification results in terms of accuracy, sensitivity, specificity, precision, F1 score, and AUC compared to other recent works. DenseNet201 and VGG-19 claimed the best scores. With an accuracy of 98.87%, an F1_Score of 98.21%, a sensitivity of 98.86%, a specificity of 99.43%, a precision of 100%, and an AUC of 99.15%, the WCL combined with CheXNet outperformed the other examined models.

摘要

自新冠疫情开始以来,全球医疗系统一直面临困境。对这种前所未有的感染进行早期诊断已成为它们的首要目标。从胸部X光图像中检测出阳性患者,对于不堪重负的医院来说是一种快速有效的解决方案。许多基于深度学习(DL)技术的研究在对新冠胸部X光图像进行分类方面表现出了高性能。然而,这些研究大多存在类别不平衡问题,主要原因是新冠样本数量有限。这样的问题可能会显著降低深度学习分类器的效率。在这项工作中,我们旨在构建一个准确的模型,使用平衡数据协助临床医生对新冠进行早期诊断。为此,我们通过迁移学习(TL)在三个不同的新冠数据集上训练了六个先进的卷积神经网络(CNN)。这些模型被开发用于执行多分类任务,以区分新冠、正常和病毒性肺炎病例。为了解决类别不平衡问题,我们首先研究了加权分类损失(WCL),然后分别在每个数据集上研究了合成少数过采样技术(SMOTE)。在对所得结果进行比较研究后,我们选择了与其他近期研究相比,在准确率、灵敏度、特异性、精确率、F1分数和AUC方面取得高分类结果的模型。DenseNet201和VGG - 19获得了最佳分数。WCL与CheXNet相结合,准确率为98.87%,F1分数为98.21%,灵敏度为98.86%,特异性为99.43%,精确率为1OO%,AUC为99.15%,优于其他测试模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8544/9422401/843ae5e963a9/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验