Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, Portugal.
Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal.
Physiol Meas. 2020 Nov 6;41(10):105005. doi: 10.1088/1361-6579/abb143.
This study aimed at comparing different recovery-based methods to assess the highest exercise oxygen uptake value ([Formula: see text]Opeak) when swimming at low-moderate, heavy and severe intensities. Complementarily, the different recovery curve kinetics were analysed.
Eighteen competitive swimmers performed a 5 × 200 m front crawl intermittent protocol (0.05 m · s increments and 3 min intervals), with respiratory gas exchange being continuously measured breath-by-breath during and post-exercise using a portable gas analyser. The directly determined [Formula: see text]Opeak ([Formula: see text]O) was compared with the values obtained by linear and exponential backward extrapolations (of different intervals) and the recovery curve mathematical modelling.
[Formula: see text]O rose with intensity increase: 41.96 ± 6.22, 46.36 ± 6.89 and 50.97 ± 7.28 ml · kg min for low-moderate, heavy and severe swims. Linear and exponential regressions applied to the first 20 s of recovery presented the [Formula: see text]Opeak values closest to [Formula: see text]O at low-moderate (42.80 ± 5.54 vs 42.88 ± 5.58 ml kg min), heavy (47.12 ± 4.91 vs 47.48 ± 5.09 ml kg min) and severe intensity domains (51.24 ± 6.89 vs 53.60 ± 8.54 ml kg · min, respectively; r = 0.5-0.8, p < 0.05). The mono-exponential function was the best fit at low-moderate and heavy intensities, while the bi-exponential function better characterized the severe exercise domain (with a slow component amplitude, time delay and time constant of 6.2 ± 2.3 ml kg min, 116.6 ± 24.3 and 39.9 ± 15.2 s, respectively).
The backward extrapolation of the first 20 s of recovery is the best method to assess the [Formula: see text]Opeak for a large spectrum of swimming intensities. Complementarily, intensity increases imply different recovery curve kinetics, particularly a mono-exponential behaviour for low-moderate and heavy exertions and a bi-exponential dynamics for severe paces.
本研究旨在比较不同的基于恢复的方法,以评估在低-中、高和极强度下游泳时的最高运动摄氧量([Formula: see text]Opeak)。此外,还分析了不同的恢复曲线动力学。
18 名竞技游泳运动员进行了 5×200 米的自由泳间歇协议(0.05 m·s 递增和 3 分钟间隔),使用便携式气体分析仪在运动中和运动后连续进行逐口气呼吸的呼吸气体交换测量。直接确定的[Formula: see text]Opeak([Formula: see text]O)与通过线性和指数向后外推(不同间隔)和恢复曲线数学建模获得的值进行了比较。
[Formula: see text]O 随着强度的增加而增加:低-中强度游泳时为 41.96±6.22 ml·kg·min,高强度游泳时为 46.36±6.89 ml·kg·min,极强度游泳时为 50.97±7.28 ml·kg·min。线性和指数回归应用于恢复的前 20 秒,在低-中强度(42.80±5.54 与 42.88±5.58 ml·kg·min)、高(47.12±4.91 与 47.48±5.09 ml·kg·min)和极强度域(分别为 51.24±6.89 与 53.60±8.54 ml·kg·min,r = 0.5-0.8,p < 0.05)中,最接近[Formula: see text]O 的[Formula: see text]Opeak 值。单指数函数在低-中强度和高强度下拟合最好,而双指数函数更好地描述了极强度运动域(具有 6.2±2.3 ml·kg·min 的慢分量幅度、116.6±24.3 和 39.9±15.2 s 的时间延迟和时间常数)。
恢复的前 20 秒的向后外推是评估游泳强度较大范围内[Formula: see text]Opeak 的最佳方法。此外,强度的增加意味着恢复曲线动力学的不同,特别是低-中强度和高强度的单指数行为和极强度的双指数动力学。