Elsawy Amr, Gregori Giovanni, Eleiwa Taher, Abdel-Mottaleb Mohamed, Shousha Mohamed Abou
Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.
Electrical and Computer Engineering, University of Miami, Miami, FL, USA.
Transl Vis Sci Technol. 2020 Oct 21;9(11):24. doi: 10.1167/tvst.9.11.24. eCollection 2020 Oct.
The purpose of this study was to propose a new algorithm for the segmentation and thickness measurement of pathological corneas with irregular layers using a two-stage graph search and ray tracing.
In the first stage, a graph, with only gradient edge-cost, is used to segment the air-epithelium and endothelium-aqueous boundaries. In the second stage, a graph, with gradient, directional, and multiplier edge-cost, is used to correct segmentation. The optical coherence tomography (OCT) image is flattened using the air-epithelium boundary and a graph search is used to segment the epithelium-Bowman's and Bowman's-stroma boundaries. Then, the OCT image is flattened using the endothelium-aqueous boundary and a graph search is used to segment the Descemet's membrane. Ray tracing is used to correct the inter-boundary distances, then the thickness is measured using the shortest distance. The proposed algorithm was trained and evaluated using 190 OCT images manually segmented by trained operators.
The mean and standard deviation of the unsigned errors of the algorithm-operator and inter-operator were 0.89 ± 1.03 and 0.77 ± 0.68 pixels in segmentation and 3.62 ± 3.98 and 2.95 ± 2.52 µm in thickness measurement.
Our proposed algorithm can produce accurate segmentation and thickness measurements compared with the manual operators.
Our algorithm could be potentially useful in the clinical practice.
本研究旨在提出一种新算法,用于使用两阶段图搜索和光线追踪对具有不规则层的病理性角膜进行分割和厚度测量。
在第一阶段,使用仅具有梯度边缘成本的图来分割空气-上皮和内皮-房水边界。在第二阶段,使用具有梯度、方向和乘数边缘成本的图来校正分割。使用空气-上皮边界对光学相干断层扫描(OCT)图像进行扁平化处理,并使用图搜索来分割上皮-鲍曼层和鲍曼层-基质边界。然后,使用内皮-房水边界对OCT图像进行扁平化处理,并使用图搜索来分割后弹力层。使用光线追踪来校正边界间距离,然后使用最短距离测量厚度。所提出的算法使用由训练有素的操作员手动分割的190张OCT图像进行训练和评估。
算法-操作员和操作员间无符号误差的均值和标准差在分割中分别为0.89±1.03和0.77±0.68像素,在厚度测量中分别为3.62±3.98和2.95±2.52µm。
与手动操作员相比,我们提出的算法可以产生准确的分割和厚度测量结果。
我们的算法在临床实践中可能具有潜在用途。