Suppr超能文献

光学相干断层扫描(OCT)图像中病理性角膜层分割与厚度测量

Pathological-Corneas Layer Segmentation and Thickness Measurement in OCT Images.

作者信息

Elsawy Amr, Gregori Giovanni, Eleiwa Taher, Abdel-Mottaleb Mohamed, Shousha Mohamed Abou

机构信息

Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.

Electrical and Computer Engineering, University of Miami, Miami, FL, USA.

出版信息

Transl Vis Sci Technol. 2020 Oct 21;9(11):24. doi: 10.1167/tvst.9.11.24. eCollection 2020 Oct.

Abstract

PURPOSE

The purpose of this study was to propose a new algorithm for the segmentation and thickness measurement of pathological corneas with irregular layers using a two-stage graph search and ray tracing.

METHODS

In the first stage, a graph, with only gradient edge-cost, is used to segment the air-epithelium and endothelium-aqueous boundaries. In the second stage, a graph, with gradient, directional, and multiplier edge-cost, is used to correct segmentation. The optical coherence tomography (OCT) image is flattened using the air-epithelium boundary and a graph search is used to segment the epithelium-Bowman's and Bowman's-stroma boundaries. Then, the OCT image is flattened using the endothelium-aqueous boundary and a graph search is used to segment the Descemet's membrane. Ray tracing is used to correct the inter-boundary distances, then the thickness is measured using the shortest distance. The proposed algorithm was trained and evaluated using 190 OCT images manually segmented by trained operators.

RESULTS

The mean and standard deviation of the unsigned errors of the algorithm-operator and inter-operator were 0.89 ± 1.03 and 0.77 ± 0.68 pixels in segmentation and 3.62 ± 3.98 and 2.95 ± 2.52 µm in thickness measurement.

CONCLUSIONS

Our proposed algorithm can produce accurate segmentation and thickness measurements compared with the manual operators.

TRANSLATIONAL RELEVANCE

Our algorithm could be potentially useful in the clinical practice.

摘要

目的

本研究旨在提出一种新算法,用于使用两阶段图搜索和光线追踪对具有不规则层的病理性角膜进行分割和厚度测量。

方法

在第一阶段,使用仅具有梯度边缘成本的图来分割空气-上皮和内皮-房水边界。在第二阶段,使用具有梯度、方向和乘数边缘成本的图来校正分割。使用空气-上皮边界对光学相干断层扫描(OCT)图像进行扁平化处理,并使用图搜索来分割上皮-鲍曼层和鲍曼层-基质边界。然后,使用内皮-房水边界对OCT图像进行扁平化处理,并使用图搜索来分割后弹力层。使用光线追踪来校正边界间距离,然后使用最短距离测量厚度。所提出的算法使用由训练有素的操作员手动分割的190张OCT图像进行训练和评估。

结果

算法-操作员和操作员间无符号误差的均值和标准差在分割中分别为0.89±1.03和0.77±0.68像素,在厚度测量中分别为3.62±3.98和2.95±2.52µm。

结论

与手动操作员相比,我们提出的算法可以产生准确的分割和厚度测量结果。

转化意义

我们的算法在临床实践中可能具有潜在用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/525c/7594599/02f433628f7e/tvst-9-11-24-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验