文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在微流控中快速制备尺寸可调的 PLGA 微球中的应用。

Artificial intelligence application for rapid fabrication of size-tunable PLGA microparticles in microfluidics.

机构信息

Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University (KAU), Jeddah, 21589, Saudi Arabia.

Blacktrace Holdings Ltd (Dolomite Microfluidics), Royston, SG8 5TW, UK.

出版信息

Sci Rep. 2020 Nov 11;10(1):19517. doi: 10.1038/s41598-020-76477-5.


DOI:10.1038/s41598-020-76477-5
PMID:33177577
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7658240/
Abstract

In this study, synthetic polymeric particles were effectively fabricated by combining modern technologies of artificial intelligence (AI) and microfluidics. Because size uniformity is a key factor that significantly influences the stability of polymeric particles, therefore, this work aimed to establish a new AI application using machine learning technology for prediction of the size of poly(D,L-lactide-co-glycolide) (PLGA) microparticles produced by diverse microfluidic systems either in the form of single or multiple particles. Experimentally, the most effective factors for tuning droplet/particle sizes are PLGA concentrations and the flow rates of dispersed and aqueous phases in microfluidics. These factors were utilized to develop five different and simple in structure artificial neural network (ANN) models that are capable of predicting PLGA particle sizes produced by different microfluidic systems either individually or jointly merged. The systematic development of ANN models allowed ultimate construction of a single in silico model which consists of data for three different microfluidic systems. This ANN model eventually allowed rapid prediction of particle sizes produced using various microfluidic systems. This AI application offers a new platform for further rapid and economical exploration of polymer particles production in defined sizes for various applications including biomimetic studies, biomedicine, and pharmaceutics.

摘要

在这项研究中,通过结合人工智能 (AI) 和微流控技术的现代技术,有效地制备了合成聚合物颗粒。由于粒径均匀性是显著影响聚合物颗粒稳定性的关键因素,因此,本工作旨在建立一种新的人工智能应用,使用机器学习技术来预测由不同微流控系统产生的聚(D,L-丙交酯-共-乙交酯) (PLGA) 微球的粒径,无论是单个颗粒还是多个颗粒的形式。实验中,调节液滴/颗粒尺寸的最有效因素是 PLGA 浓度以及微流控中分散相和水相的流速。这些因素被用于开发五个不同的、结构简单的人工神经网络 (ANN) 模型,这些模型能够分别或联合预测不同微流控系统产生的 PLGA 颗粒的粒径。ANN 模型的系统开发最终允许构建一个单一的计算机模型,该模型包含三个不同微流控系统的数据。该 ANN 模型最终允许快速预测使用各种微流控系统生产的颗粒粒径。这种人工智能应用为进一步快速和经济地探索用于各种应用的特定尺寸的聚合物颗粒生产提供了新的平台,包括仿生研究、生物医学和药剂学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/2e009dd47ea4/41598_2020_76477_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/db2ec24d1ba4/41598_2020_76477_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/56b85d9b17ae/41598_2020_76477_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/4c0e8dfbf21b/41598_2020_76477_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/d2ac2d2fcb59/41598_2020_76477_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/ce7b913628bd/41598_2020_76477_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/db27cd9cecda/41598_2020_76477_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/fdf59356464d/41598_2020_76477_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/1232e01256a1/41598_2020_76477_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/9fde1960113f/41598_2020_76477_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/965c94666083/41598_2020_76477_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/2e009dd47ea4/41598_2020_76477_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/db2ec24d1ba4/41598_2020_76477_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/56b85d9b17ae/41598_2020_76477_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/4c0e8dfbf21b/41598_2020_76477_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/d2ac2d2fcb59/41598_2020_76477_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/ce7b913628bd/41598_2020_76477_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/db27cd9cecda/41598_2020_76477_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/fdf59356464d/41598_2020_76477_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/1232e01256a1/41598_2020_76477_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/9fde1960113f/41598_2020_76477_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/965c94666083/41598_2020_76477_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932c/7658240/2e009dd47ea4/41598_2020_76477_Fig11_HTML.jpg

相似文献

[1]
Artificial intelligence application for rapid fabrication of size-tunable PLGA microparticles in microfluidics.

Sci Rep. 2020-11-11

[2]
Microfluidic Synthesis of Indomethacin-Loaded PLGA Microparticles Optimized by Machine Learning.

Front Mol Biosci. 2021-9-22

[3]
Microfluidics-Assisted Size Tuning and Biological Evaluation of PLGA Particles.

Pharmaceutics. 2019-11-8

[4]
Synthesis of uniform poly(d,l-lactide) and poly(d,l-lactide-co-glycolide) microspheres using a microfluidic chip for comparison.

Electrophoresis. 2014-2

[5]
Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles.

Int J Pharm. 2014-3-28

[6]
Fabrication of PEG-PLGA Microparticles with Tunable Sizes for Controlled Drug Release Application.

Molecules. 2023-9-18

[7]
Preparation of size-tunable sub-200 nm PLGA-based nanoparticles with a wide size range using a microfluidic platform.

PLoS One. 2022

[8]
Regulation of Drug Release by Tuning Surface Textures of Biodegradable Polymer Microparticles.

ACS Appl Mater Interfaces. 2017-4-11

[9]
Poly (lactic-co-glycolic acid) particles prepared by microfluidics and conventional methods. Modulated particle size and rheology.

J Colloid Interface Sci. 2014-11-4

[10]
Structured Biodegradable Polymeric Microparticles for Drug Delivery Produced Using Flow Focusing Glass Microfluidic Devices.

ACS Appl Mater Interfaces. 2015-10-12

引用本文的文献

[1]
Applications of Artificial Intelligence in Biotech Drug Discovery and Product Development.

MedComm (2020). 2025-7-30

[2]
Zonisamide nanodiamonds for brain targeting: A comprehensive study utilising in silico, in vitro, in vivo, and molecular investigation for successful nose-to-brain delivery for epilepsy management.

Drug Deliv Transl Res. 2025-7-5

[3]
Machine learning integrated with in vitro experiments for study of drug release from PLGA nanoparticles.

Sci Rep. 2025-2-4

[4]
Machine learning-driven optimization of mRNA-lipid nanoparticle vaccine quality with XGBoost/Bayesian method and ensemble model approaches.

J Pharm Anal. 2024-11

[5]
Machine learning approaches for biomolecular, biophysical, and biomaterials research.

Biophys Rev (Melville). 2022-6-3

[6]
Simple microfluidic devices for detection of water contamination: a state-of-art review.

Front Bioeng Biotechnol. 2024-2-2

[7]
Machine learning assisted exploration of the influential parameters on the PLGA nanoparticles.

Sci Rep. 2024-1-11

[8]
Research Progress on Immunomodulatory Effects of Poly (Lactic-co- Glycolic Acid) Nanoparticles Loaded with Traditional Chinese Medicine Monomers.

Curr Drug Deliv. 2024

[9]
Generation of Photopolymerized Microparticles Based on PEGDA Hydrogel Using T-Junction Microfluidic Devices: Effect of the Flow Rates.

Micromachines (Basel). 2023-6-21

[10]
Microsystem Advances through Integration with Artificial Intelligence.

Micromachines (Basel). 2023-4-8

本文引用的文献

[1]
Digital Pharmaceutical Sciences.

AAPS PharmSciTech. 2020-7-26

[2]
One-step fabrication of core-shell structured alginate-PLGA/PLLA microparticles as a novel drug delivery system for water soluble drugs.

Biomater Sci. 2013-5-2

[3]
New opportunities for creating man-made bioarchitectures utilizing microfluidics.

Biomed Microdevices. 2019-7-4

[4]
Novel machine learning application for prediction of membrane insertion potential of cell-penetrating peptides.

Int J Pharm. 2019-6-21

[5]
Learning from droplet flows in microfluidic channels using deep neural networks.

Sci Rep. 2019-5-31

[6]
Artificial intelligence in medical education.

Med Teach. 2019-4-21

[7]
A guide to deep learning in healthcare.

Nat Med. 2019-1-7

[8]
Using machine learning to discover shape descriptors for predicting emulsion stability in a microfluidic channel.

Soft Matter. 2019-2-6

[9]
Cell-Free Approaches in Synthetic Biology Utilizing Microfluidics.

Genes (Basel). 2018-3-6

[10]
Artificial intelligence in healthcare: past, present and future.

Stroke Vasc Neurol. 2017-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索