文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习优化的载吲哚美辛聚乳酸-羟基乙酸共聚物微球的微流控合成

Microfluidic Synthesis of Indomethacin-Loaded PLGA Microparticles Optimized by Machine Learning.

作者信息

Damiati Safa A, Damiati Samar

机构信息

Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.

Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.

出版信息

Front Mol Biosci. 2021 Sep 22;8:677547. doi: 10.3389/fmolb.2021.677547. eCollection 2021.


DOI:10.3389/fmolb.2021.677547
PMID:34631792
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8493061/
Abstract

Several attempts have been made to encapsulate indomethacin (IND), to control its sustained release and reduce its side effects. To develop a successful formulation, drug release from a polymeric matrix and subsequent biodegradation need to be achieved. In this study, we focus on combining microfluidic and artificial intelligence (AI) technologies, alongside using biomaterials, to generate drug-loaded polymeric microparticles (MPs). Our strategy is based on using Poly (D,L-lactide-co-glycolide) (PLGA) as a biodegradable polymer for the generation of a controlled drug delivery vehicle, with IND as an example of a poorly soluble drug, a 3D flow focusing microfluidic chip as a simple device synthesis particle, and machine learning using artificial neural networks (ANNs) as an in silico tool to generate and predict size-tunable PLGA MPs. The influence of different polymer concentrations and the flow rates of dispersed and continuous phases on PLGA droplet size prediction in a microfluidic platform were assessed. Subsequently, the developed ANN model was utilized as a quick guide to generate PLGA MPs at a desired size. After conditions optimization, IND-loaded PLGA MPs were produced, and showed larger droplet sizes than blank MPs. Further, the proposed microfluidic system is capable of producing monodisperse particles with a well-controllable shape and size. IND-loaded-PLGA MPs exhibited acceptable drug loading and encapsulation efficiency (7.79 and 62.35%, respectively) and showed sustained release, reaching approximately 80% within 9 days. Hence, combining modern technologies of machine learning and microfluidics with biomaterials can be applied to many pharmaceutical applications, as a quick, low cost, and reproducible strategy.

摘要

人们已经进行了多次尝试来封装吲哚美辛(IND),以控制其缓释并减少其副作用。为了开发一种成功的制剂,需要实现药物从聚合物基质中的释放以及随后的生物降解。在本研究中,我们专注于将微流控技术和人工智能(AI)技术与生物材料相结合,以制备载药聚合物微粒(MPs)。我们的策略是使用聚(D,L-丙交酯-共-乙交酯)(PLGA)作为可生物降解的聚合物来制备可控释药物递送载体,以难溶性药物IND为例,使用3D流动聚焦微流控芯片作为简单的微粒合成装置,并使用基于人工神经网络(ANNs)的机器学习作为计算机工具来生成和预测尺寸可调的PLGA MPs。评估了不同聚合物浓度以及分散相和连续相流速对微流控平台中PLGA液滴尺寸预测的影响。随后,所开发的ANN模型被用作快速指南,以生成所需尺寸的PLGA MPs。经过条件优化,制备了载IND的PLGA MPs,其液滴尺寸比空白MPs大。此外,所提出的微流控系统能够制备形状和尺寸可控的单分散微粒。载IND的PLGA MPs表现出可接受的载药量和包封率(分别为7.79%和62.35%),并呈现出缓释特性,在9天内释放量达到约80%。因此,将机器学习和微流控等现代技术与生物材料相结合,可作为一种快速、低成本且可重复的策略应用于许多药物应用中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/825f/8493061/867e536560c4/fmolb-08-677547-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/825f/8493061/5277de896c98/fmolb-08-677547-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/825f/8493061/b6a95f81221b/fmolb-08-677547-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/825f/8493061/c9ca69e35784/fmolb-08-677547-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/825f/8493061/9f0fe48c1a54/fmolb-08-677547-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/825f/8493061/867e536560c4/fmolb-08-677547-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/825f/8493061/5277de896c98/fmolb-08-677547-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/825f/8493061/b6a95f81221b/fmolb-08-677547-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/825f/8493061/c9ca69e35784/fmolb-08-677547-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/825f/8493061/9f0fe48c1a54/fmolb-08-677547-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/825f/8493061/867e536560c4/fmolb-08-677547-g005.jpg

相似文献

[1]
Microfluidic Synthesis of Indomethacin-Loaded PLGA Microparticles Optimized by Machine Learning.

Front Mol Biosci. 2021-9-22

[2]
Artificial intelligence application for rapid fabrication of size-tunable PLGA microparticles in microfluidics.

Sci Rep. 2020-11-11

[3]
Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles.

Int J Pharm. 2014-3-28

[4]
Regulation of Drug Release by Tuning Surface Textures of Biodegradable Polymer Microparticles.

ACS Appl Mater Interfaces. 2017-4-11

[5]
Formulation and process considerations for the design of sildenafil-loaded polymeric microparticles by vibrational spray-drying.

Pharm Dev Technol. 2016-1-7

[6]
Synthesis of uniform poly(d,l-lactide) and poly(d,l-lactide-co-glycolide) microspheres using a microfluidic chip for comparison.

Electrophoresis. 2014-2

[7]
Formation Mechanism, In vitro and In vivo Evaluation of Dimpled Exenatide Loaded PLGA Microparticles Prepared by Ultra-Fine Particle Processing System.

AAPS PharmSciTech. 2019-1-9

[8]
3D bioprinted microparticles: Optimizing loading efficiency using advanced DoE technique and machine learning modeling.

Int J Pharm. 2022-11-25

[9]
Enhanced encapsulation and bioavailability of breviscapine in PLGA microparticles by nanocrystal and water-soluble polymer template techniques.

Eur J Pharm Biopharm. 2017-6

[10]
Preparation, characterization and in vitro cytotoxicity of indomethacin-loaded PLLA/PLGA microparticles using supercritical CO2 technique.

Eur J Pharm Biopharm. 2008-9

引用本文的文献

[1]
Chitosan-Stabilized Lipid Vesicles with Indomethacin for Modified Release with Prolonged Analgesic Effect: Biocompatibility, Pharmacokinetics and Organ Protection Efficacy.

Pharmaceutics. 2025-4-16

[2]
Enhanced Stability and In Vitro Biocompatibility of Chitosan-Coated Lipid Vesicles for Indomethacin Delivery.

Pharmaceutics. 2024-12-9

[3]
Investigation of the Impact of Manufacturing Methods on Protein-Based Long-Acting Injectable Formulations: A Comparative Assessment for Microfluidics vs. Conventional Methods.

Pharmaceutics. 2024-9-27

[4]
The Dawn of a New Pharmaceutical Epoch: Can AI and Robotics Reshape Drug Formulation?

Adv Healthc Mater. 2024-11

[5]
Machine learning assisted exploration of the influential parameters on the PLGA nanoparticles.

Sci Rep. 2024-1-11

[6]
Microfluidic Synthesis of Magnetite Nanoparticles for the Controlled Release of Antibiotics.

Pharmaceutics. 2023-8-27

[7]
Applied machine learning as a driver for polymeric biomaterials design.

Nat Commun. 2023-8-10

[8]
Enhanced Maturation of 3D Bioprinted Skeletal Muscle Tissue Constructs Encapsulating Soluble Factor-Releasing Microparticles.

Macromol Biosci. 2023-12

[9]
Microsystem Advances through Integration with Artificial Intelligence.

Micromachines (Basel). 2023-4-8

[10]
Synthesis of nanoparticles via microfluidic devices and integrated applications.

Mikrochim Acta. 2023-6-10

本文引用的文献

[1]
Microfluidic droplet generation based on non-embedded co-flow-focusing using 3D printed nozzle.

Sci Rep. 2020-12-10

[2]
Artificial intelligence application for rapid fabrication of size-tunable PLGA microparticles in microfluidics.

Sci Rep. 2020-11-11

[3]
Digital Pharmaceutical Sciences.

AAPS PharmSciTech. 2020-7-26

[4]
Microfluidic fabrication of microcarriers with sequential delivery of VEGF and BMP-2 for bone regeneration.

Sci Rep. 2020-7-16

[5]
Recent advances in polymeric drug delivery systems.

Biomater Res. 2020-6-6

[6]
Data-Driven Modeling of the Bicalutamide Dissolution from Powder Systems.

AAPS PharmSciTech. 2020-3-31

[7]
Translating the fabrication of protein-loaded poly(lactic-co-glycolic acid) nanoparticles from bench to scale-independent production using microfluidics.

Drug Deliv Transl Res. 2020-6

[8]
AKR1C3 Promotes AR-V7 Protein Stabilization and Confers Resistance to AR-Targeted Therapies in Advanced Prostate Cancer.

Mol Cancer Ther. 2019-7-15

[9]
Microfluidic Devices for Drug Delivery Systems and Drug Screening.

Genes (Basel). 2018-2-16

[10]
Application of machine learning in prediction of hydrotrope-enhanced solubilisation of indomethacin.

Int J Pharm. 2017-9-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索