Reinke Lena, Bartl Julia, Koch Marcus, Kubik Stefan
Fachbereich Chemie - Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany.
INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.
Beilstein J Org Chem. 2020 Nov 2;16:2687-2700. doi: 10.3762/bjoc.16.219. eCollection 2020.
Gold nanoparticles covered with a mixture of ligands of which one type contains solubilizing triethylene glycol residues and the other peripheral zinc(II)-dipicolylamine (DPA) complexes allowed the optical detection of hydrogenphosphate, diphosphate, and triphosphate anions in water/methanol 1:2 (v/v). These anions caused the bright red solutions of the nanoparticles to change their color because of nanoparticle aggregation followed by precipitation, whereas halides or oxoanions such as sulfate, nitrate, or carbonate produced no effect. The sensitivity of phosphate sensing depended on the nature of the anion, with diphosphate and triphosphate inducing visual changes at significantly lower concentrations than hydrogenphosphate. In addition, the sensing sensitivity was also affected by the ratio of the ligands on the nanoparticle surface, decreasing as the number of immobilized zinc(II)-dipicolylamine groups increased. A nanoparticle containing a 9:1 ratio of the solubilizing and the anion-binding ligand showed a color change at diphosphate and triphosphate concentrations as low as 10 μmol/L, for example, and precipitated at slightly higher concentrations. Hydrogenphosphate induced a nanoparticle precipitation only at a concentration of ca. 400 μmol/L, at which the precipitates formed in the presence of diphosphates and triphosphates redissolved. A nanoparticle containing fewer binding sites was more sensitive, while increasing the relative number of zinc(II)-dipicolylamine complexes beyond 25% had a negative impact on the limit of detection and the optical response. Transmission electron microscopy provided evidence that the changes of the nanoparticle properties observed in the presence of the phosphates were due to a nanoparticle crosslinking, consistent with the preferred binding mode of zinc(II)-dipicolylamine complexes with phosphate anions which involves binding of the anion between two metal centers. This work thus provided information on how the behavior of mixed monolayer-protected gold nanoparticles is affected by multivalent interactions, at the same time introducing a method to assess whether certain biologically relevant anions are present in an aqueous solution within a specific concentration range.
表面覆盖有配体混合物的金纳米颗粒,其中一种配体含有可溶解的三甘醇残基,另一种是外围的锌(II)-二吡啶甲胺(DPA)配合物,可用于光学检测水/甲醇1:2(v/v)中的磷酸氢根、二磷酸根和三磷酸根阴离子。这些阴离子会使纳米颗粒的亮红色溶液变色,原因是纳米颗粒聚集后沉淀,而卤化物或含氧阴离子(如硫酸根、硝酸根或碳酸根)则没有影响。磷酸盐传感的灵敏度取决于阴离子的性质,二磷酸根和三磷酸根在比磷酸氢根低得多的浓度下就能引起视觉变化。此外,传感灵敏度还受到纳米颗粒表面配体比例的影响,随着固定化锌(II)-二吡啶甲胺基团数量的增加而降低。例如,含有9:1比例的可溶解配体和阴离子结合配体的纳米颗粒,在二磷酸根和三磷酸根浓度低至10 μmol/L时就会发生颜色变化,浓度稍高时就会沉淀。磷酸氢根仅在约400 μmol/L的浓度下才会导致纳米颗粒沉淀,此时在二磷酸根和三磷酸根存在下形成的沉淀会重新溶解。含有较少结合位点的纳米颗粒更敏感,而将锌(II)-二吡啶甲胺配合物的相对数量增加到超过25%会对检测限和光学响应产生负面影响。透射电子显微镜提供的证据表明,在磷酸盐存在下观察到的纳米颗粒性质变化是由于纳米颗粒交联,这与锌(II)-二吡啶甲胺配合物与磷酸根阴离子的优先结合模式一致,即阴离子在两个金属中心之间结合。因此,这项工作提供了有关混合单层保护金纳米颗粒的行为如何受到多价相互作用影响的信息,同时引入了一种方法来评估特定浓度范围内的水溶液中是否存在某些与生物相关的阴离子。