Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio.
Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia.
Biol Psychiatry. 2021 Mar 15;89(6):600-614. doi: 10.1016/j.biopsych.2020.08.026. Epub 2020 Sep 7.
Dentate gyrus (DG), a "gate" that controls information flow into the hippocampus, plays important roles in regulating both cognitive (e.g., spatial learning and memory) and mood behaviors. Deficits in DG neurons contribute to the pathogenesis of not only neurological, but also psychiatric, disorders, such as anxiety disorder. Whereas DG's function in spatial learning and memory has been extensively investigated, its role in regulating anxiety remains elusive.
Using c-Fos to mark DG neuron activation, we identified a group of embryonic born dorsal DG (dDG) neurons, which were activated by anxiogenic stimuli and specifically express osteocalcin (Ocn)-Cre. We further investigated their functions in regulating anxiety and the underlying mechanisms by using a combination of chemogenetic, electrophysiological, and RNA-sequencing methods.
The Ocn-Cre dDG neurons were highly active in response to anxiogenic environment but had lower excitability and fewer presynaptic inputs than those of Ocn-Cre or adult born dDG neurons. Activating Ocn-Cre dDG neurons suppressed anxiety-like behaviors and increased adult DG neurogenesis, whereas ablating or chronically inhibiting Ocn-Cre dDG neurons exacerbated anxiety-like behaviors, impaired adult DG neurogenesis, and abolished activity (e.g., voluntary wheel running)-induced anxiolytic effect and adult DG neurogenesis. RNA-sequencing screening for factors induced by activation of Ocn-Cre dDG neurons identified BDNF, which was required for Ocn-Cre dDG neurons mediated antianxiety-like behaviors and adult DG neurogenesis.
These results demonstrate critical functions of Ocn-Cre dDG neurons in suppressing anxiety-like behaviors but promoting adult DG neurogenesis, and both functions are likely through activation of BDNF.
齿状回(DG)是控制信息流入海马的“门”,在调节认知(例如空间学习和记忆)和情绪行为方面发挥着重要作用。DG 神经元的缺陷不仅与神经退行性疾病有关,还与精神疾病有关,如焦虑症。虽然 DG 在空间学习和记忆中的功能已经得到广泛研究,但它在调节焦虑中的作用仍不清楚。
我们使用 c-Fos 标记 DG 神经元的激活,鉴定了一组胚胎源性背侧 DG(dDG)神经元,这些神经元被焦虑刺激激活,并特异性表达骨钙素(Ocn)-Cre。我们进一步使用化学遗传学、电生理学和 RNA 测序方法组合,研究了它们在调节焦虑中的作用及其潜在机制。
Ocn-Cre dDG 神经元对焦虑环境高度活跃,但兴奋性较低,与 Ocn-Cre 或成年新生 dDG 神经元相比,其突触前输入较少。激活 Ocn-Cre dDG 神经元可抑制焦虑样行为并增加成年 DG 神经发生,而阻断或慢性抑制 Ocn-Cre dDG 神经元则加剧焦虑样行为、损害成年 DG 神经发生,并消除活动(如自愿轮跑)诱导的抗焦虑作用和成年 DG 神经发生。针对 Ocn-Cre dDG 神经元激活诱导的因子进行 RNA 测序筛选,确定了 BDNF,这是 Ocn-Cre dDG 神经元介导的抗焦虑样行为和成年 DG 神经发生所必需的。
这些结果表明 Ocn-Cre dDG 神经元在抑制焦虑样行为但促进成年 DG 神经发生方面具有关键作用,这两种功能可能都是通过激活 BDNF 来实现的。