From the Departments of Neurosurgery (J.P.J.S., G.W.H., T.C., R.S.K., A.C.), Internal Medicine (L.Z.), and Neurology (F.S.V.), McGovern Medical School, Center for Precision Health, School of Biomedical Informatics (Z.Z.), and Human Genetics Center, School of Public Health (Z.Z.), The University of Texas Health Science Center at Houston; and Department of Neurology (S.P., M.M.), Columbia University, NY.
Neurology. 2021 Jan 26;96(4):e553-e562. doi: 10.1212/WNL.0000000000011211. Epub 2020 Nov 12.
To determine whether machine learning (ML) algorithms can improve the prediction of delayed cerebral ischemia (DCI) and functional outcomes after subarachnoid hemorrhage (SAH).
ML models and standard models (SMs) were trained to predict DCI and functional outcomes with data collected within 3 days of admission. Functional outcomes at discharge and at 3 months were quantified using the modified Rankin Scale (mRS) for neurologic disability (dichotomized as good [mRS ≤ 3] vs poor [mRS ≥ 4] outcomes). Concurrently, clinicians prospectively prognosticated 3-month outcomes of patients. The performance of ML, SMs, and clinicians were retrospectively compared.
DCI status, discharge, and 3-month outcomes were available for 399, 393, and 240 participants, respectively. Prospective clinician (an attending, a fellow, and a nurse) prognostication of 3-month outcomes was available for 90 participants. ML models yielded predictions with the following area under the receiver operating characteristic curve (AUC) scores: 0.75 ± 0.07 (95% confidence interval [CI] 0.64-0.84) for DCI, 0.85 ± 0.05 (95% CI 0.75-0.92) for discharge outcome, and 0.89 ± 0.03 (95% CI 0.81-0.94) for 3-month outcome. ML outperformed SMs, improving AUC by 0.20 (95% CI -0.02 to 0.4) for DCI, by 0.07 ± 0.03 (95% CI -0.0018 to 0.14) for discharge outcomes, and by 0.14 (95% CI 0.03-0.24) for 3-month outcomes and matched physician's performance in predicting 3-month outcomes.
ML models significantly outperform SMs in predicting DCI and functional outcomes and has the potential to improve SAH management.
确定机器学习(ML)算法是否可以提高蛛网膜下腔出血(SAH)后迟发性脑缺血(DCI)和功能结局的预测能力。
使用入院 3 天内收集的数据,训练 ML 模型和标准模型(SM)以预测 DCI 和功能结局。使用改良 Rankin 量表(mRS)评估出院和 3 个月时的神经功能残疾(分为良好[mRS≤3]和不良[mRS≥4]结局)来量化功能结局。同时,临床医生前瞻性地预测患者 3 个月的结局。回顾性比较 ML、SM 和临床医生的性能。
399 名患者的 DCI 状态、出院和 3 个月结局可用,393 名患者的出院和 3 个月结局可用,240 名患者的 3 个月结局可用。90 名参与者的前瞻性临床医生(主治医生、住院医生和护士)预测 3 个月结局可用。ML 模型的接受者操作特征曲线(ROC)下面积(AUC)评分如下:DCI 为 0.75±0.07(95%置信区间 [CI] 0.64-0.84),出院结局为 0.85±0.05(95% CI 0.75-0.92),3 个月结局为 0.89±0.03(95% CI 0.81-0.94)。ML 优于 SM,AUC 提高 0.20(95% CI -0.02 至 0.4)用于 DCI,提高 0.07±0.03(95% CI -0.0018 至 0.14)用于出院结局,提高 0.14(95% CI 0.03-0.24)用于 3 个月结局,且与医生预测 3 个月结局的表现相匹配。
ML 模型在预测 DCI 和功能结局方面明显优于 SM,具有改善 SAH 管理的潜力。