Suppr超能文献

磁场下的固有免疫调节:可能的机制和治疗应用。

Innate Immune Regulation Under Magnetic Fields With Possible Mechanisms and Therapeutic Applications.

机构信息

National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.

Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.

出版信息

Front Immunol. 2020 Oct 22;11:582772. doi: 10.3389/fimmu.2020.582772. eCollection 2020.

Abstract

With the wide applications of magnetic fields (MFs) in medicine, researchers from different disciplines have gained interest in understanding the effect of various types of MFs on living cells and organisms. In this paper, we mainly focus on the immunological and physical aspects of the immune responses and their mechanisms under different types of MFs. Immune cells were slightly affected by low-frequency alternating MFs but were strongly influenced by moderate-intensity MFs and high-gradient MFs (HGMFs). Larger immune cells, such as macrophages, were more sensitive to HGMFs, which biased the cell polarization into the anti-inflammatory M2 phenotype. Subject to the gradient forces of varying directions and strength, the elongated M2 macrophage also remodeled the cytoskeleton with actin polymerization and changed the membrane receptors and ion channel gating. These alterations were very similar to changes caused by the small GTPase RhoA interference in macrophage. Regulation of iron metabolism may also contribute to the MF effects in macrophages. High MFs were found to regulate the iron content in monocyte-/macrophage-derived osteoclasts by affecting the expression of iron-regulation genes. On the other hand, paramagnetic nanoparticles (NPs) combined with external MFs play an important role in T-cell immunity. Paramagnetic NP-coated T-cells can cluster their T-cell receptors (TCRs) by using an external MF, thus increasing the cell-cell contact and communication followed by enhanced tumor killing capacity. The external MF can also guide the adoptively transferred magnetic NP-coated T-cells to their target sites , thus dramatically increasing the efficiency of cell therapy. Additionally, iron oxide NPs for ferroptosis-based cancer therapy and other MF-related therapeutic applications with obstacles were also addressed. Furthermore, for a profound understanding of the effect of MFs on immune cells, multidisciplinary research involving both experimental research and theoretical modeling is essential.

摘要

随着磁场(MFs)在医学中的广泛应用,来自不同学科的研究人员对了解不同类型的 MFs 对活细胞和生物体的影响产生了兴趣。在本文中,我们主要关注不同类型的 MFs 下免疫反应的免疫和物理方面及其机制。低频交变 MFs 对免疫细胞的影响较小,但中等强度的 MFs 和高梯度 MFs(HGMFs)对免疫细胞的影响较大。较大的免疫细胞,如巨噬细胞,对 HGMFs 更为敏感,这会使细胞极化偏向抗炎 M2 表型。在不同方向和强度的梯度力作用下,伸长的 M2 巨噬细胞还重塑了肌动蛋白聚合的细胞骨架,并改变了膜受体和离子通道的门控。这些变化与小 GTPase RhoA 干扰巨噬细胞引起的变化非常相似。铁代谢的调节也可能有助于 MFs 在巨噬细胞中的作用。研究发现,高 MFs 通过影响铁调节基因的表达来调节单核细胞/巨噬细胞衍生破骨细胞中的铁含量。另一方面,顺磁纳米颗粒(NPs)与外加磁场结合在 T 细胞免疫中起着重要作用。顺磁 NP 包被的 T 细胞可以通过外加磁场聚集其 T 细胞受体(TCRs),从而增加细胞-细胞接触和通讯,随后增强肿瘤杀伤能力。外加磁场还可以引导过继转移的磁性 NP 包被 T 细胞到达其靶位,从而大大提高细胞治疗的效率。此外,还讨论了用于基于铁死亡的癌症治疗和其他具有障碍的 MF 相关治疗应用的氧化铁 NPs。此外,为了深入了解 MFs 对免疫细胞的影响,需要涉及实验研究和理论建模的多学科研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ce/7649827/1389d617f178/fimmu-11-582772-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验