Suppr超能文献

通过对护理记录的自然语言处理,描绘常见慢性病中共同和独特的症状群。

Characterizing shared and distinct symptom clusters in common chronic conditions through natural language processing of nursing notes.

机构信息

School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

School of Nursing, Columbia University, New York, New York, USA.

出版信息

Res Nurs Health. 2021 Dec;44(6):906-919. doi: 10.1002/nur.22190. Epub 2021 Oct 12.

Abstract

Data-driven characterization of symptom clusters in chronic conditions is essential for shared cluster detection and physiological mechanism discovery. This study aims to computationally describe symptom documentation from electronic nursing notes and compare symptom clusters among patients diagnosed with four chronic conditions-chronic obstructive pulmonary disease (COPD), heart failure, type 2 diabetes mellitus, and cancer. Nursing notes (N = 504,395; 133,977 patients) were obtained for the 2016 calendar year from a single medical center. We used NimbleMiner, a natural language processing application, to identify the presence of 56 symptoms. We calculated symptom documentation prevalence by note and patient for the corpus. Then, we visually compared documentation for a subset of patients (N = 22,657) diagnosed with COPD (n = 3339), heart failure (n = 6587), diabetes (n = 12,139), and cancer (n = 7269) and conducted multiple correspondence analysis and hierarchical clustering to discover underlying groups of patients who have similar symptom profiles (i.e., symptom clusters) for each condition. As expected, pain was the most frequently documented symptom. All conditions had a group of patients characterized by no symptoms. Shared clusters included cardiovascular symptoms for heart failure and diabetes; pain and other symptoms for COPD, diabetes, and cancer; and a newly-identified cognitive and neurological symptom cluster for heart failure, diabetes, and cancer. Cancer (gastrointestinal symptoms and fatigue) and COPD (mental health symptoms) each contained a unique cluster. In summary, we report both shared and distinct, as well as established and novel, symptom clusters across chronic conditions. Findings support the use of electronic health record-derived notes and NLP methods to study symptoms and symptom clusters to advance symptom science.

摘要

数据驱动的慢性疾病症状群特征描述对于共同症状群的检测和生理机制发现至关重要。本研究旨在通过计算方法描述电子护理记录中的症状记录,并比较四种慢性疾病(慢性阻塞性肺疾病(COPD)、心力衰竭、2 型糖尿病和癌症)患者的症状群。从一家医疗中心获取了 2016 年全年的护理记录(N=504395;133977 名患者)。我们使用自然语言处理应用程序 NimbleMiner 来识别 56 种症状的存在。我们按记录和患者计算了症状记录的总体患病率。然后,我们对一小部分患者(N=22657)的记录进行了可视化比较,这些患者分别被诊断为 COPD(n=3339)、心力衰竭(n=6587)、糖尿病(n=12139)和癌症(n=7269),并进行了多元对应分析和层次聚类,以发现每个疾病中具有相似症状特征(即症状群)的潜在患者群体。正如预期的那样,疼痛是记录最频繁的症状。所有疾病都有一组没有症状的患者。共同的症状群包括心力衰竭和糖尿病的心血管症状;COPD、糖尿病和癌症的疼痛和其他症状;以及心力衰竭、糖尿病和癌症中新发现的认知和神经症状群。癌症(胃肠道症状和疲劳)和 COPD(心理健康症状)各有一个独特的症状群。总之,我们报告了慢性疾病中既有共同的、又有独特的、既有已建立的、又有新颖的症状群。研究结果支持使用电子健康记录记录和 NLP 方法来研究症状和症状群,以推进症状科学。

相似文献

引用本文的文献

7
Big Data in Oncology Nursing Research: State of the Science.肿瘤护理学研究中的大数据:科学现状。
Semin Oncol Nurs. 2023 Jun;39(3):151428. doi: 10.1016/j.soncn.2023.151428. Epub 2023 Apr 19.
8
Natural Language Processing of Nursing Notes: An Integrative Review.护理记录的自然语言处理:综合述评。
Comput Inform Nurs. 2023 Jun 1;41(6):377-384. doi: 10.1097/CIN.0000000000000967.

本文引用的文献

1
A Proposed Theory of Symptom Cluster Management.一种症状群管理的提出理论。
Belitung Nurs J. 2021 Apr 29;7(2):78-87. doi: 10.33546/bnj.1359. eCollection 2021.
4
Subtypes of Type 2 Diabetes Determined From Clinical Parameters.基于临床参数的 2 型糖尿病亚型。
Diabetes. 2020 Oct;69(10):2086-2093. doi: 10.2337/dbi20-0001. Epub 2020 Aug 25.
7
Type 2 Diabetes: Multiple Genes, Multiple Diseases.2 型糖尿病:多个基因,多种疾病。
Curr Diab Rep. 2019 Jul 10;19(8):55. doi: 10.1007/s11892-019-1169-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验