Suppr超能文献

新南威尔士大学人脸识别测试:超级人脸识别者的筛查工具。

UNSW Face Test: A screening tool for super-recognizers.

机构信息

School of Psychology, UNSW Sydney, Kensington, NSW, Australia.

Department of Psychology, University of Greenwich, London, United Kingdom.

出版信息

PLoS One. 2020 Nov 16;15(11):e0241747. doi: 10.1371/journal.pone.0241747. eCollection 2020.

Abstract

We present a new test-the UNSW Face Test (www.unswfacetest.com)-that has been specifically designed to screen for super-recognizers in large online cohorts and is available free for scientific use. Super-recognizers are people that demonstrate sustained performance in the very top percentiles in tests of face identification ability. Because they represent a small proportion of the population, screening large online cohorts is an important step in their initial recruitment, before confirmatory testing via standardized measures and more detailed cognitive testing. We provide normative data on the UNSW Face Test from 3 cohorts tested via the internet (combined n = 23,902) and 2 cohorts tested in our lab (combined n = 182). The UNSW Face Test: (i) captures both identification memory and perceptual matching, as confirmed by correlations with existing tests of these abilities; (ii) captures face-specific perceptual and memorial abilities, as confirmed by non-significant correlations with non-face object processing tasks; (iii) enables researchers to apply stricter selection criteria than other available tests, which boosts the average accuracy of the individuals selected in subsequent testing. Together, these properties make the test uniquely suited to screening for super-recognizers in large online cohorts.

摘要

我们提出了一种新的测试方法——新南威尔士大学人脸测试(www.unswfacetest.com),该测试专门用于筛选大型在线群体中的超级识别者,并且可供科学免费使用。超级识别者是指在人脸识别能力测试中表现出持续处于顶尖水平的人群。由于他们只占人口的一小部分,因此在通过标准化测试和更详细的认知测试进行确认性测试之前,筛选大型在线群体是他们初步招募的重要步骤。我们提供了通过互联网测试的 3 个人群(合并 n = 23,902)和在我们实验室测试的 2 个人群(合并 n = 182)的 UNSW 人脸测试的规范数据。UNSW 人脸测试:(i)通过与现有这些能力测试的相关性,同时捕捉到识别记忆和感知匹配;(ii)通过与非人脸物体处理任务的非显著相关性,捕捉到特定于人脸的感知和记忆能力;(iii)使研究人员能够应用比其他可用测试更严格的选择标准,从而提高后续测试中被选中个体的平均准确性。综上所述,这些特性使得该测试特别适合于在大型在线群体中筛选超级识别者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ac4/7668578/16cd2c05aad6/pone.0241747.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验