Key Lab of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, Xi'an, Shaanxi 710071, People's Republic of China.
AI-based Big Medical Imaging Data Frontier Research Center, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, Shaanxi 710071, People's Republic of China.
Phys Med Biol. 2021 Jan 26;66(3):035001. doi: 10.1088/1361-6560/abcad9.
Automated male pelvic multi-organ segmentation on CT images is highly desired for applications, including radiotherapy planning. To further improve the performance and efficiency of existing automated segmentation methods, in this study, we propose a multi-task edge-recalibrated network (MTER-Net), which aims to overcome the challenges, including blurry boundaries, large inter-patient appearance variations, and low soft-tissue contrast. The proposed MTER-Net is equipped with the following novel components. (a) To exploit the saliency and stability of femoral heads, we employed a light-weight localization module to locate the target region and efficiently remove the complex background. (b) We add an edge stream to the regular segmentation stream to focus on processing the edge-related information, distinguish the organs with blurry boundaries, and then boost the overall segmentation performance. Between the regular segmentation stream and edge stream, we introduce an edge recalibration module at each resolution level to connect the intermediate layers and deliver the higher-level activations from the regular stream to the edge stream to denoise the irrelevant activations. (c) Finally, using a 3D Atrous Spatial Pyramid Pooling (ASPP) feature fusion module, we fuse the features at different scales in the regular stream and the predictions from the edge stream to form the final segmentation result. The proposed segmentation network was evaluated on 200 prostate cancer patient CT images with manually delineated contours of bladder, rectum, seminal vesicle, and prostate. The segmentation performance of the proposed method was quantitatively evaluated using three metrics including Dice similarity coefficient (DSC), average surface distance (ASD), and 95% surface distance (95SD). The proposed MTER-Net achieves average DSC of 86.35%, ASD of 1.09 mm, and 95SD of 3.53 mm on the four organs, which outperforms the state-of-the-art segmentation networks by a large margin. Specifically, the quantitative DSC evaluation results of the four organs are 96.49% (bladder), 86.39% (rectum), 76.38% (seminal vesicle), and 86.14% (prostate), respectively. In conclusion, we demonstrate that the proposed MTER-Net efficiently attains superior performance to state-of-the-art pelvic organ segmentation methods.
在 CT 图像上自动进行男性骨盆多器官分割对于应用程序非常重要,包括放射治疗计划。为了进一步提高现有自动分割方法的性能和效率,在本研究中,我们提出了一种多任务边缘校准网络(MTER-Net),旨在克服包括边界模糊、大的患者间外观变化和软组织对比度低等挑战。所提出的 MTER-Net 具有以下新颖的组件。(a) 为了利用股骨头的显著性和稳定性,我们采用了一个轻量级的定位模块来定位目标区域,并有效地去除复杂的背景。(b) 我们在常规分割流中添加了一个边缘流,以专注于处理与边缘相关的信息,区分边界模糊的器官,然后提高整体分割性能。在常规分割流和边缘流之间,我们在每个分辨率级别引入一个边缘校准模块,以连接中间层,并将来自常规流的更高层次的激活传递到边缘流,以去除不相关的激活。(c) 最后,使用三维空洞空间金字塔池化(ASPP)特征融合模块,我们融合常规流中的不同尺度的特征和边缘流的预测,形成最终的分割结果。所提出的分割网络在 200 例前列腺癌患者的 CT 图像上进行了评估,这些图像具有手动勾画的膀胱、直肠、精囊和前列腺的轮廓。使用三个度量标准,包括骰子相似系数(DSC)、平均表面距离(ASD)和 95%表面距离(95SD),对所提出方法的分割性能进行了定量评估。所提出的 MTER-Net 在四个器官上的平均 DSC 为 86.35%,ASD 为 1.09mm,95SD 为 3.53mm,大大优于现有的分割网络。具体来说,四个器官的定量 DSC 评估结果分别为 96.49%(膀胱)、86.39%(直肠)、76.38%(精囊)和 86.14%(前列腺)。总之,我们证明所提出的 MTER-Net 能够有效地实现优于现有骨盆器官分割方法的性能。