Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland.
Wyss Translational Center Zurich, University and ETH Zurich, Zurich, Switzerland.
Sci Rep. 2020 Nov 16;10(1):19882. doi: 10.1038/s41598-020-76322-9.
Regenerative tissue-engineered matrix-based heart valves (TEM-based TEHVs) may become an alternative to currently-used bioprostheses for transcatheter valve replacement. We recently identified TEM-based TEHVs-geometry as one key-factor guiding their remodeling towards successful long-term performance or failure. While our first-generation TEHVs, with a simple, non-physiological valve-geometry, failed over time due to leaflet-wall fusion phenomena, our second-generation TEHVs, with a computational modeling-inspired design, showed native-like remodeling resulting in long-term performance. However, a thorough understanding on how TEHV-geometry impacts the underlying host cell response, which in return determines tissue remodeling, is not yet fully understood. To assess that, we here present a comparative samples evaluation derived from our first- and second-generation TEHVs. We performed an in-depth qualitative and quantitative (immuno-)histological analysis focusing on key-players of the inflammatory and remodeling cascades (M1/M2 macrophages, α-SMA- and endothelial cells). First-generation TEHVs were prone to chronic inflammation, showing a high presence of macrophages and α-SMA-cells, hinge-area thickening, and delayed endothelialization. Second-generation TEHVs presented with negligible amounts of macrophages and α-SMA-cells, absence of hinge-area thickening, and early endothelialization. Our results suggest that TEHV-geometry can significantly influence the host cell response by determining the infiltration and presence of macrophages and α-SMA-cells, which play a crucial role in orchestrating TEHV remodeling.
基于再生组织工程的心脏瓣膜(TEM 基 TEHV)可能成为经导管瓣膜置换术目前使用的生物假体的替代品。我们最近发现,TEM 基 TEHV 的几何形状是指导其重塑以实现成功的长期性能或失败的关键因素之一。虽然我们的第一代 TEHV,具有简单的、非生理的瓣膜几何形状,由于瓣叶壁融合现象而随着时间的推移失效,但我们的第二代 TEHV,采用计算建模启发的设计,表现出类似于天然的重塑,从而实现了长期性能。然而,对于 TEHV 几何形状如何影响潜在的宿主细胞反应,从而决定组织重塑,我们还没有完全理解。为了评估这一点,我们在这里展示了源自我们的第一代和第二代 TEHV 的比较样本评估。我们进行了深入的定性和定量(免疫)组织学分析,重点关注炎症和重塑级联中的关键参与者(M1/M2 巨噬细胞、α-SMA 细胞和内皮细胞)。第一代 TEHV 容易发生慢性炎症,表现出大量巨噬细胞和 α-SMA 细胞、铰链区增厚和延迟内皮化。第二代 TEHV 表现出巨噬细胞和 α-SMA 细胞的数量可忽略不计、铰链区无增厚和早期内皮化。我们的结果表明,TEHV 几何形状可以通过确定巨噬细胞和 α-SMA 细胞的浸润和存在来显著影响宿主细胞反应,这些细胞在协调 TEHV 重塑中起着至关重要的作用。