Hibbah El Houcine, El Maroufy Hamid, Fuchs Christiane, Ziad Taib
Department of Applied Mathematics, Faculty of Sciences and Technics, Sultan Mouly Slimane University, Morocco.
Faculty of Business Administration and Economics, Bielefeld University, Bielefield, Germany.
J Appl Stat. 2019 Oct 16;47(8):1354-1374. doi: 10.1080/02664763.2019.1677573. eCollection 2020.
State-dependent regime switching diffusion processes or hybrid switching diffusion (HSD) processes are hard to simulate with classical methods which leads us to adopt a Markov chain Monte Carlo (MCMC) Bayesian approach very convenient to estimate complicated models such as the HSD one. In the HSD, the diffusion component is dependent on the switching discrete hidden regimes and the transition rates of the regime switching are dependent on the diffusion observations. Since in reality phenomena are only observed in discrete times, data imputation is called for to create more observations so as to have good approximations for the density of the diffusion process. Three categories of entities will be computed in a Bayesian context: The latent imputed observations, the regime switching states, and the parameters of the models. The latent imputed data is updated at random time intervals in block using a Metropolis Hastings algorithm. The switching states are computed by an adaptation of a forward filtering backward smoothing algorithm to the HSD model. The parameters are estimated after prior specifications and conditional posterior densities formulation using Gibbs sampler or Metropolis Hastings algorithm.
状态依赖的政权切换扩散过程或混合切换扩散(HSD)过程很难用传统方法进行模拟,这促使我们采用马尔可夫链蒙特卡罗(MCMC)贝叶斯方法,该方法非常便于估计诸如HSD模型这样的复杂模型。在HSD中,扩散成分依赖于切换离散隐藏状态,并且状态切换的转移速率依赖于扩散观测值。由于在现实中现象仅在离散时间被观测到,因此需要进行数据插补以创建更多观测值,以便对扩散过程的密度有良好的近似。在贝叶斯背景下将计算三类实体:潜在插补观测值、状态切换状态和模型参数。潜在插补数据使用梅特罗波利斯-黑斯廷斯算法在块中以随机时间间隔进行更新。切换状态通过将前向滤波反向平滑算法适配到HSD模型来计算。在使用吉布斯采样器或梅特罗波利斯-黑斯廷斯算法进行先验规范和条件后验密度公式化之后估计参数。