文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

中国采取的非药物性干预措施对遏制 2019 冠状病毒病的效果。

Effect of non-pharmaceutical interventions to contain COVID-19 in China.

机构信息

WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK.

School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.

出版信息

Nature. 2020 Sep;585(7825):410-413. doi: 10.1038/s41586-020-2293-x. Epub 2020 May 4.


DOI:10.1038/s41586-020-2293-x
PMID:32365354
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7116778/
Abstract

On 11 March 2020, the World Health Organization (WHO) declared coronavirus disease 2019 (COVID-19) a pandemic. The strategies based on non-pharmaceutical interventions that were used to contain the outbreak in China appear to be effective, but quantitative research is still needed to assess the efficacy of non-pharmaceutical interventions and their timings. Here, using epidemiological data on COVID-19 and anonymized data on human movement, we develop a modelling framework that uses daily travel networks to simulate different outbreak and intervention scenarios across China. We estimate that there were a total of 114,325 cases of COVID-19 (interquartile range 76,776-164,576) in mainland China as of 29 February 2020. Without non-pharmaceutical interventions, we predict that the number of cases would have been 67-fold higher (interquartile range 44-94-fold) by 29 February 2020, and we find that the effectiveness of different interventions varied. We estimate that early detection and isolation of cases prevented more infections than did travel restrictions and contact reductions, but that a combination of non-pharmaceutical interventions achieved the strongest and most rapid effect. According to our model, the lifting of travel restrictions from 17 February 2020 does not lead to an increase in cases across China if social distancing interventions can be maintained, even at a limited level of an on average 25% reduction in contact between individuals that continues until late April. These findings improve our understanding of the effects of non-pharmaceutical interventions on COVID-19, and will inform response efforts across the world.

摘要

2020 年 3 月 11 日,世界卫生组织(WHO)宣布 2019 年冠状病毒病(COVID-19)为大流行。中国用来控制疫情爆发的非药物干预策略似乎是有效的,但仍需要定量研究来评估非药物干预措施及其时机的效果。在这里,我们使用 COVID-19 的流行病学数据和匿名的人类活动数据,开发了一个建模框架,该框架使用每日旅行网络来模拟中国各地不同的疫情爆发和干预情景。我们估计,截至 2020 年 2 月 29 日,中国大陆共有 114325 例 COVID-19 病例(四分位距 76776-164576)。如果没有非药物干预,我们预测到 2020 年 2 月 29 日,病例数将增加 67 倍(四分位距 44-94 倍),并且我们发现不同干预措施的效果有所不同。我们估计,早期发现和隔离病例比旅行限制和减少接触更能阻止感染,但非药物干预措施的组合能实现最强和最快的效果。根据我们的模型,如果可以保持社交距离干预措施,即使在个人接触减少 25%的有限水平上持续到 4 月底,那么从 2020 年 2 月 17 日起取消旅行限制不会导致中国各地病例增加。这些发现提高了我们对非药物干预措施对 COVID-19 影响的理解,并将为全球的应对工作提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/1c9432583e3c/EMS114564-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/2a720d3dee8d/EMS114564-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/d62eab2c1535/EMS114564-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/52a8e04528c1/EMS114564-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/ad40d6b576eb/EMS114564-f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/63aef43948f3/EMS114564-f008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/dcfbacbf6db3/EMS114564-f009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/a4c642e9e1d2/EMS114564-f010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/36d2d209f8e6/EMS114564-f011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/59fc9fba11d6/EMS114564-f012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/854621984257/EMS114564-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/ab6a92567a07/EMS114564-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/1c9432583e3c/EMS114564-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/2a720d3dee8d/EMS114564-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/d62eab2c1535/EMS114564-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/52a8e04528c1/EMS114564-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/ad40d6b576eb/EMS114564-f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/63aef43948f3/EMS114564-f008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/dcfbacbf6db3/EMS114564-f009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/a4c642e9e1d2/EMS114564-f010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/36d2d209f8e6/EMS114564-f011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/59fc9fba11d6/EMS114564-f012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/854621984257/EMS114564-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/ab6a92567a07/EMS114564-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/7116778/1c9432583e3c/EMS114564-f003.jpg

相似文献

[1]
Effect of non-pharmaceutical interventions to contain COVID-19 in China.

Nature. 2020-5-4

[2]
Risk estimation and prediction of the transmission of coronavirus disease-2019 (COVID-19) in the mainland of China excluding Hubei province.

Infect Dis Poverty. 2020-8-24

[3]
What China's coronavirus response can teach the rest of the world.

Nature. 2020-3

[4]
Quarantine alone or in combination with other public health measures to control COVID-19: a rapid review.

Cochrane Database Syst Rev. 2020-4-8

[5]
Response to COVID-19 in South Korea and implications for lifting stringent interventions.

BMC Med. 2020-10-9

[6]
Flexible, Freely Available Stochastic Individual Contact Model for Exploring COVID-19 Intervention and Control Strategies: Development and Simulation.

JMIR Public Health Surveill. 2020-9-18

[7]
Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel Coronavirus.

Math Biosci. 2020-5-1

[8]
The effectiveness of full and partial travel bans against COVID-19 spread in Australia for travellers from China during and after the epidemic peak in China.

J Travel Med. 2020-8-20

[9]
Travel-related control measures to contain the COVID-19 pandemic: a rapid review.

Cochrane Database Syst Rev. 2020-10-5

[10]
Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study.

Lancet Infect Dis. 2020-6-16

引用本文的文献

[1]
Behavioral interventions and respiratory virus incidence in a two-cohort study.

Sci Rep. 2025-8-27

[2]
Foodborne disease outbreaks before and during the COVID-19 pandemic in Jiangsu Province, China.

One Health. 2025-7-29

[3]
Probability-Based Early Warning for Seasonal Influenza in China: Model Development Study.

JMIR Med Inform. 2025-8-6

[4]
Should public health policy exempt cases with low viral load from isolation during an epidemic?: a modelling study.

Infect Dis Model. 2025-7-9

[5]
Understanding the social and cognitive influences on the adoption of COVID-19 non-pharmaceutical interventions: a survey of a Saudi Arabian sample.

Front Public Health. 2025-6-27

[6]
Excess respiratory, circulatory, neoplasm, and other mortality rates during the Covid-19 pandemic in the EU and their implications.

Epidemiol Infect. 2025-7-14

[7]
Impact of home confinement due to the COVID-19 outbreak on vitamin D levels and trends among children with pneumonia aged 1-35 months.

Pediatr Discov. 2023-11-5

[8]
Efficiency evaluation on case finding strategy for COVID-19 outbreak control under China's "dynamic zero-case policy": a retrospective field epidemiology study.

Front Public Health. 2025-6-13

[9]
Comparative evaluation of behavioral epidemic models using COVID-19 data.

Proc Natl Acad Sci U S A. 2025-6-17

[10]
Time Series Analysis Using Different Forecast Methods and Case Fatality Rate for Covid-19 Pandemic.

Reg Sci Policy Prac. 2022-6-5

本文引用的文献

[1]
The effect of human mobility and control measures on the COVID-19 epidemic in China.

Science. 2020-3-25

[2]
The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak.

Science. 2020-3-6

[3]
Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts.

Lancet Glob Health. 2020-2-28

[4]
[Early containment strategies and core measures for prevention and control of novel coronavirus pneumonia in China].

Zhonghua Yu Fang Yi Xue Za Zhi. 2020-3-6

[5]
COVID-19: what is next for public health?

Lancet. 2020-2-22

[6]
Effectiveness of airport screening at detecting travellers infected with novel coronavirus (2019-nCoV).

Euro Surveill. 2020-2

[7]
Nonpharmaceutical Measures for Pandemic Influenza in Nonhealthcare Settings-International Travel-Related Measures.

Emerg Infect Dis. 2020-5

[8]
Nonpharmaceutical Measures for Pandemic Influenza in Nonhealthcare Settings-Personal Protective and Environmental Measures.

Emerg Infect Dis. 2020-5

[9]
Nonpharmaceutical Measures for Pandemic Influenza in Nonhealthcare Settings-Social Distancing Measures.

Emerg Infect Dis. 2020-5

[10]
Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study.

Lancet. 2020-1-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索