Suppr超能文献

药物发现中的移动目标。

Moving targets in drug discovery.

机构信息

Division of Drug Design and Medicinal Chemistry, Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.

BenevolentAI, 4-8 Maple Street, London, W1T 5HD, UK.

出版信息

Sci Rep. 2020 Nov 19;10(1):20213. doi: 10.1038/s41598-020-77033-x.

Abstract

Drug Discovery is a lengthy and costly process and has faced a period of declining productivity within the last two decades resulting in increasing importance of integrative data-driven approaches. In this paper, data mining and integration is leveraged to inspect target innovation trends in drug discovery. The study highlights protein families and classes that have received more attention and those that have just emerged in the scientific literature, thus highlighting novel opportunities for drug intervention. In order to delineate the evolution of target-driven research interest from a biological perspective, trends in biological process annotations from Gene Ontology and disease annotations from DisGeNET are captured. The analysis reveals an increasing interest in targets related to immune system processes, and a recurrent trend for targets involved in circulatory system processes. At the level of diseases, targets associated with cancer-related pathologies, intellectual disability, and schizophrenia are increasingly investigated in recent years. The methodology enables researchers to capture trends in research attention in target space at an early stage during the drug discovery process. Workflows, scripts, and data used in this study are publicly available from https://github.com/BZdrazil/Moving_Targets . An interactive web application allows the customized exploration of target, biological process, and disease trends (available at https://rguha.shinyapps.io/MovingTargets/ ).

摘要

药物发现是一个漫长而昂贵的过程,在过去二十年中,药物发现的生产力一直呈下降趋势,这导致了综合数据驱动方法的重要性日益增加。在本文中,利用数据挖掘和整合来检查药物发现中的目标创新趋势。该研究强调了在科学文献中受到更多关注和刚刚出现的蛋白质家族和类别,从而突出了药物干预的新机会。为了从生物学角度描绘目标驱动的研究兴趣的演变,从基因本体论中捕获了生物过程注释的趋势,并从 DisGeNET 中捕获了疾病注释。分析表明,人们对与免疫系统过程相关的目标的兴趣日益增加,并且与循环系统过程相关的目标的趋势反复出现。在疾病层面上,近年来,与癌症相关病理、智力残疾和精神分裂症相关的靶点越来越受到研究人员的关注。该方法使研究人员能够在药物发现过程的早期阶段捕捉目标空间中研究注意力的趋势。本研究中使用的工作流程、脚本和数据可从 https://github.com/BZdrazil/Moving_Targets 获得。一个交互式网络应用程序允许定制探索目标、生物过程和疾病趋势(可在 https://rguha.shinyapps.io/MovingTargets/ 获得)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eaf8/7677539/29318837f9f3/41598_2020_77033_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验