Suppr超能文献

用于校正扩散加权成像中梯度非线性的高效近似信号重建。

Efficient approximate signal reconstruction for correction of gradient nonlinearities in diffusion-weighted imaging.

机构信息

Department of Computer Science, Vanderbilt University, Nashville, TN, USA.

Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.

出版信息

Magn Reson Imaging. 2023 Oct;102:20-25. doi: 10.1016/j.mri.2023.03.014. Epub 2023 Mar 23.

Abstract

In diffusion weighted MRI (DW-MRI), hardware nonlinearities lead to spatial variations in the orientation and magnitude of diffusion weighting. While the correction of these spatial distortions has been well established for analyses of DW-MRI, the existing voxel-wise empirical correction for gradient nonlinearities requires reimplementation of existing models, as the resultant gradients vary by voxel. Herein, we propose a two-step signal approximation after voxel-wise correction of gradient nonlinearity effects in DW-MRI. The proposed technique (1) scales the diffusion signal and (2) resamples the gradient orientations. This results in uniform gradients across the corrected image and provides the key advantage of seamless integration into current diffusion workflows. We investigated the validity of our technique by fitting a multi-compartment neurite orientation dispersion and density imaging (NODDI) model to the empirical correction and proposed approximation in five subjects from the MASiVar pediatric dataset. We evaluated intra-cellular volume fraction (iVF), CSF volume fraction (cVF), and orientation dispersion index (ODI) from NODDI. The Cohen's d of iVF, cVF and ODI between the techniques was <0.2 indicating the proposed technique does not exhibit significant differences from the voxel-wise correction technique. Our two-step signal approximation is an efficient representation of the voxel-wise gradient table correction. Using this approximation, correction of gradient nonlinearities can be easily incorporated into existing diffusion preprocessing pipelines and is implemented in "PreQual: An automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images".

摘要

在扩散加权磁共振成像(DW-MRI)中,硬件非线性会导致扩散加权的方向和幅度在空间上发生变化。虽然已经针对 DW-MRI 的分析建立了这些空间变形的校正方法,但现有的体素级经验梯度非线性校正需要重新实现现有模型,因为结果梯度因体素而异。在此,我们提出了一种两步信号逼近方法,用于校正 DW-MRI 中的梯度非线性效应。该方法(1)对扩散信号进行缩放,(2)重新采样梯度方向。这导致校正后的图像中的梯度均匀,并提供了无缝集成到当前扩散工作流程的关键优势。我们通过在 MASiVar 儿科数据集的五个受试者中拟合多室神经突方向分散和密度成像(NODDI)模型来研究我们技术的有效性,该模型拟合了经验校正和提出的逼近。我们从 NODDI 中评估了细胞内体积分数(iVF)、CSF 体积分数(cVF)和方向分散指数(ODI)。技术之间 iVF、cVF 和 ODI 的 Cohen's d 值<0.2,表明该技术与体素级校正技术没有显著差异。我们的两步信号逼近是体素级梯度表校正的有效表示。使用这种逼近,可以轻松地将梯度非线性校正纳入现有的扩散预处理管道中,并在“PreQual:用于扩散加权 MRI 图像的集成预处理和质量保证的自动化管道”中实现。

相似文献

本文引用的文献

10
Dipy, a library for the analysis of diffusion MRI data.Dipy,一个用于分析扩散磁共振成像数据的库。
Front Neuroinform. 2014 Feb 21;8:8. doi: 10.3389/fninf.2014.00008. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验