Suppr超能文献

基于大脑活动重建所见图像的生成对抗网络。

Generative Adversarial Networks Conditioned on Brain Activity Reconstruct Seen Images.

作者信息

St-Yves Ghislain, Naselaris Thomas

机构信息

Medical University of South Carolina, Dept. of Neurosciences, 96 Jonathan-Lucas St. CSB 325c, Charleston, SC 29425 USA.

Medical University of South Carolina, Dept. of Neurosciences, 96 Jonathan-Lucas St. CSB 325h, Charleston, SC 29425 USA.

出版信息

Conf Proc IEEE Int Conf Syst Man Cybern. 2018 Oct;2018:1054-1061. doi: 10.1109/SMC.2018.00187. Epub 2019 Jan 17.

Abstract

We consider the inference problem of reconstructing a visual stimulus from brain activity measurements (e.g. fMRI) that encode this stimulus. Recovering a complete image is complicated by the fact that neural representations are noisy, high-dimensional, and contain incomplete information about image details. Thus, reconstructions of complex images from brain activity require a strong prior. Here we propose to train generative adversarial networks (GANs) to learn a generative model of images that is conditioned on measurements of brain activity. We consider two challenges of this approach: First, given that GANs require far more data to train than is typically collected in an fMRI experiment, how do we obtain enough samples to train a GAN that is conditioned on brain activity? Secondly, how do we ensure that our generated samples are robust against noise present in fMRI data? Our strategy to surmount both of these problems centers around the creation of surrogate brain activity samples that are generated by an encoding model. We find that the generative model thus trained generalizes to real fRMI data measured during perception of images and is able to reconstruct the basic outline of the stimuli.

摘要

我们考虑从编码视觉刺激的大脑活动测量(例如功能磁共振成像,fMRI)中重建视觉刺激的推理问题。由于神经表征存在噪声、维度高且包含关于图像细节的不完整信息,恢复完整图像变得复杂。因此,从大脑活动重建复杂图像需要一个强大的先验。在这里,我们提议训练生成对抗网络(GAN)来学习以大脑活动测量为条件的图像生成模型。我们考虑这种方法的两个挑战:第一,鉴于GAN训练所需的数据远远多于fMRI实验中通常收集的数据,我们如何获得足够的样本以训练一个以大脑活动为条件的GAN?其次,我们如何确保生成的样本对fMRI数据中存在的噪声具有鲁棒性?我们克服这两个问题的策略围绕由编码模型生成的替代大脑活动样本的创建。我们发现,这样训练的生成模型能够推广到在图像感知期间测量的真实fMRI数据,并能够重建刺激的基本轮廓。

相似文献

1
Generative Adversarial Networks Conditioned on Brain Activity Reconstruct Seen Images.基于大脑活动重建所见图像的生成对抗网络。
Conf Proc IEEE Int Conf Syst Man Cybern. 2018 Oct;2018:1054-1061. doi: 10.1109/SMC.2018.00187. Epub 2019 Jan 17.
2
Generative adversarial networks with decoder-encoder output noises.生成对抗网络与解码器编码器输出噪声。
Neural Netw. 2020 Jul;127:19-28. doi: 10.1016/j.neunet.2020.04.005. Epub 2020 Apr 9.
4
BigGAN-based Bayesian Reconstruction of Natural Images from Human Brain Activity.基于BigGAN的人脑活动自然图像贝叶斯重建
Neuroscience. 2020 Sep 15;444:92-105. doi: 10.1016/j.neuroscience.2020.07.040. Epub 2020 Jul 28.
9
Securing content-based image retrieval on the cloud using generative models.使用生成模型确保云端基于内容的图像检索。
Multimed Tools Appl. 2022;81(22):31219-31243. doi: 10.1007/s11042-022-12880-6. Epub 2022 Apr 8.

引用本文的文献

5
Aligning latent representations of neural activity.对齐神经活动的潜在表征。
Nat Biomed Eng. 2023 Apr;7(4):337-343. doi: 10.1038/s41551-022-00962-7.
9

本文引用的文献

1
Deep image reconstruction from human brain activity.从人类大脑活动中进行深度图像重建。
PLoS Comput Biol. 2019 Jan 14;15(1):e1006633. doi: 10.1371/journal.pcbi.1006633. eCollection 2019 Jan.
8
Encoding and decoding in fMRI.功能磁共振成像中的编码和解码。
Neuroimage. 2011 May 15;56(2):400-10. doi: 10.1016/j.neuroimage.2010.07.073. Epub 2010 Aug 4.
10
Identifying natural images from human brain activity.从人类大脑活动中识别自然图像。
Nature. 2008 Mar 20;452(7185):352-5. doi: 10.1038/nature06713. Epub 2008 Mar 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验