Suppr超能文献

数据中心世界中计算研究的演进。

The evolution of computational research in a data-centric world.

机构信息

Titus Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.

Titus Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

Cell. 2024 Aug 22;187(17):4449-4457. doi: 10.1016/j.cell.2024.07.045.

Abstract

Computational data-centric research techniques play a prevalent and multi-disciplinary role in life science research. In the past, scientists in wet labs generated the data, and computational researchers focused on creating tools for the analysis of those data. Computational researchers are now becoming more independent and taking leadership roles within biomedical projects, leveraging the increased availability of public data. We are now able to generate vast amounts of data, and the challenge has shifted from data generation to data analysis. Here we discuss the pitfalls, challenges, and opportunities facing the field of data-centric research in biology. We discuss the evolving perception of computational data-driven research and its rise as an independent domain in biomedical research while also addressing the significant collaborative opportunities that arise from integrating computational research with experimental and translational biology. Additionally, we discuss the future of data-centric research and its applications across various areas of the biomedical field.

摘要

计算型以数据为中心的研究技术在生命科学研究中扮演着普遍且多学科的角色。过去,湿实验室内的科学家们生成数据,而计算研究人员则专注于为分析这些数据创建工具。现在,计算研究人员在生物医学项目中变得更加独立,并发挥领导作用,利用公共数据的可用性不断提高。我们现在能够生成大量的数据,挑战已经从数据生成转移到数据分析。在这里,我们讨论了生物学中以数据为中心的研究领域所面临的陷阱、挑战和机遇。我们讨论了计算驱动的数据研究的不断发展的认识及其作为生物医学研究中一个独立领域的兴起,同时也解决了将计算研究与实验和转化生物学相结合所带来的重大合作机会。此外,我们还讨论了以数据为中心的研究的未来及其在生物医学领域各个领域的应用。

相似文献

6
Clinical Bioinformatics: challenges and opportunities.临床生物信息学:挑战与机遇。
BMC Bioinformatics. 2012;13 Suppl 14(Suppl 14):S1. doi: 10.1186/1471-2105-13-S14-S1. Epub 2012 Sep 7.
9
Comparability and reproducibility of biomedical data.生物医学数据的可比性和可重复性。
Brief Bioinform. 2013 Jul;14(4):391-401. doi: 10.1093/bib/bbs078. Epub 2012 Nov 27.

本文引用的文献

2
5
Computational approaches streamlining drug discovery.计算方法简化药物发现。
Nature. 2023 Apr;616(7958):673-685. doi: 10.1038/s41586-023-05905-z. Epub 2023 Apr 26.
6
Data Sharing Enters a New Era.数据共享进入新时代。
Ann Intern Med. 2023 Mar;176(3):400-401. doi: 10.7326/M22-3479. Epub 2023 Feb 28.
7
UniProt: the Universal Protein Knowledgebase in 2023.UniProt:2023 年的通用蛋白质知识库。
Nucleic Acids Res. 2023 Jan 6;51(D1):D523-D531. doi: 10.1093/nar/gkac1052.
10
The Carbon Footprint of Bioinformatics.生物信息学的碳足迹。
Mol Biol Evol. 2022 Mar 2;39(3). doi: 10.1093/molbev/msac034.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验