IEEE J Biomed Health Inform. 2021 Jul;25(7):2615-2628. doi: 10.1109/JBHI.2020.3040015. Epub 2021 Jul 27.
Privacy concerns make it infeasible to construct a large medical image dataset by fusing small ones from different sources/institutions. Therefore, federated learning (FL) becomes a promising technique to learn from multi-source decentralized data with privacy preservation. However, the cross-client variation problem in medical image data would be the bottleneck in practice. In this paper, we propose a variation-aware federated learning (VAFL) framework, where the variations among clients are minimized by transforming the images of all clients onto a common image space. We first select one client with the lowest data complexity to define the target image space and synthesize a collection of images through a privacy-preserving generative adversarial network, called PPWGAN-GP. Then, a subset of those synthesized images, which effectively capture the characteristics of the raw images and are sufficiently distinct from any raw image, is automatically selected for sharing with other clients. For each client, a modified CycleGAN is applied to translate its raw images to the target image space defined by the shared synthesized images. In this way, the cross-client variation problem is addressed with privacy preservation. We apply the framework for automated classification of clinically significant prostate cancer and evaluate it using multi-source decentralized apparent diffusion coefficient (ADC) image data. Experimental results demonstrate that the proposed VAFL framework stably outperforms the current horizontal FL framework. As VAFL is independent of deep learning architectures for classification, we believe that the proposed framework is widely applicable to other medical image classification tasks.
隐私问题使得通过融合来自不同来源/机构的小数据集来构建大型医学图像数据集变得不可行。因此,联邦学习 (FL) 成为一种有前途的技术,可以在保护隐私的情况下从多源分散数据中进行学习。然而,医学图像数据中的跨客户端变化问题将成为实践中的瓶颈。在本文中,我们提出了一种变化感知联邦学习 (VAFL) 框架,通过将所有客户端的图像转换到公共图像空间来最小化客户端之间的变化。我们首先选择一个数据复杂度最低的客户端来定义目标图像空间,并通过隐私保护生成对抗网络(称为 PPWGAN-GP)合成一组图像。然后,自动选择这些合成图像的子集与其他客户端共享,这些子集有效地捕获原始图像的特征,并且与任何原始图像足够不同。对于每个客户端,应用修改后的 CycleGAN 将其原始图像转换为共享合成图像定义的目标图像空间。通过这种方式,在保护隐私的同时解决了跨客户端变化问题。我们应用该框架对临床上有意义的前列腺癌进行自动分类,并使用多源分散表观扩散系数 (ADC) 图像数据对其进行评估。实验结果表明,所提出的 VAFL 框架稳定地优于当前的水平联邦学习框架。由于 VAFL 独立于分类的深度学习架构,我们相信该框架广泛适用于其他医学图像分类任务。
IEEE J Biomed Health Inform. 2021-7
IEEE J Biomed Health Inform. 2022-11
Complex Intell Systems. 2023-3-29
IEEE Trans Biomed Eng. 2023-4
Comput Med Imaging Graph. 2022-12
Entropy (Basel). 2022-12-31
Eur Heart J Imaging Methods Pract. 2025-1-24
Sensors (Basel). 2024-8-6
Pattern Recognit. 2024-7
Int J Popul Data Sci. 2023
Br J Radiol. 2023-10
Diagnostics (Basel). 2023-10-6
Diagnostics (Basel). 2023-4-24