文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于多源去中心化医学图像数据的变分感知联邦学习。

Variation-Aware Federated Learning With Multi-Source Decentralized Medical Image Data.

出版信息

IEEE J Biomed Health Inform. 2021 Jul;25(7):2615-2628. doi: 10.1109/JBHI.2020.3040015. Epub 2021 Jul 27.


DOI:10.1109/JBHI.2020.3040015
PMID:33232246
Abstract

Privacy concerns make it infeasible to construct a large medical image dataset by fusing small ones from different sources/institutions. Therefore, federated learning (FL) becomes a promising technique to learn from multi-source decentralized data with privacy preservation. However, the cross-client variation problem in medical image data would be the bottleneck in practice. In this paper, we propose a variation-aware federated learning (VAFL) framework, where the variations among clients are minimized by transforming the images of all clients onto a common image space. We first select one client with the lowest data complexity to define the target image space and synthesize a collection of images through a privacy-preserving generative adversarial network, called PPWGAN-GP. Then, a subset of those synthesized images, which effectively capture the characteristics of the raw images and are sufficiently distinct from any raw image, is automatically selected for sharing with other clients. For each client, a modified CycleGAN is applied to translate its raw images to the target image space defined by the shared synthesized images. In this way, the cross-client variation problem is addressed with privacy preservation. We apply the framework for automated classification of clinically significant prostate cancer and evaluate it using multi-source decentralized apparent diffusion coefficient (ADC) image data. Experimental results demonstrate that the proposed VAFL framework stably outperforms the current horizontal FL framework. As VAFL is independent of deep learning architectures for classification, we believe that the proposed framework is widely applicable to other medical image classification tasks.

摘要

隐私问题使得通过融合来自不同来源/机构的小数据集来构建大型医学图像数据集变得不可行。因此,联邦学习 (FL) 成为一种有前途的技术,可以在保护隐私的情况下从多源分散数据中进行学习。然而,医学图像数据中的跨客户端变化问题将成为实践中的瓶颈。在本文中,我们提出了一种变化感知联邦学习 (VAFL) 框架,通过将所有客户端的图像转换到公共图像空间来最小化客户端之间的变化。我们首先选择一个数据复杂度最低的客户端来定义目标图像空间,并通过隐私保护生成对抗网络(称为 PPWGAN-GP)合成一组图像。然后,自动选择这些合成图像的子集与其他客户端共享,这些子集有效地捕获原始图像的特征,并且与任何原始图像足够不同。对于每个客户端,应用修改后的 CycleGAN 将其原始图像转换为共享合成图像定义的目标图像空间。通过这种方式,在保护隐私的同时解决了跨客户端变化问题。我们应用该框架对临床上有意义的前列腺癌进行自动分类,并使用多源分散表观扩散系数 (ADC) 图像数据对其进行评估。实验结果表明,所提出的 VAFL 框架稳定地优于当前的水平联邦学习框架。由于 VAFL 独立于分类的深度学习架构,我们相信该框架广泛适用于其他医学图像分类任务。

相似文献

[1]
Variation-Aware Federated Learning With Multi-Source Decentralized Medical Image Data.

IEEE J Biomed Health Inform. 2021-7

[2]
Customized Federated Learning for Multi-Source Decentralized Medical Image Classification.

IEEE J Biomed Health Inform. 2022-11

[3]
Federated learning with hyper-network-a case study on whole slide image analysis.

Sci Rep. 2023-1-31

[4]
A distribution information sharing federated learning approach for medical image data.

Complex Intell Systems. 2023-3-29

[5]
Federated transfer learning for auxiliary classifier generative adversarial networks: framework and industrial application.

J Intell Manuf. 2023-5-5

[6]
Federated Multi-Task Learning for Joint Diagnosis of Multiple Mental Disorders on MRI Scans.

IEEE Trans Biomed Eng. 2023-4

[7]
Blockchain and homomorphic encryption based privacy-preserving model aggregation for medical images.

Comput Med Imaging Graph. 2022-12

[8]
Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results.

Med Image Anal. 2020-10

[9]
HT-Fed-GAN: Federated Generative Model for Decentralized Tabular Data Synthesis.

Entropy (Basel). 2022-12-31

[10]
Differentially Private Client Selection and Resource Allocation in Federated Learning for Medical Applications Using Graph Neural Networks.

Sensors (Basel). 2024-8-8

引用本文的文献

[1]
Advancing breast, lung and prostate cancer research with federated learning. A systematic review.

NPJ Digit Med. 2025-5-27

[2]
New ways to use imaging data in cardiovascular research: survey of opinions on federated learning and synthetic data.

Eur Heart J Imaging Methods Pract. 2025-1-24

[3]
Applying YOLOv6 as an ensemble federated learning framework to classify breast cancer pathology images.

Sci Rep. 2025-1-30

[4]
PSA-FL-CDM: A Novel Federated Learning-Based Consensus Model for Post-Stroke Assessment.

Sensors (Basel). 2024-8-6

[5]
Federated learning for medical image analysis: A survey.

Pattern Recognit. 2024-7

[6]
Federated learning for generating synthetic data: a scoping review.

Int J Popul Data Sci. 2023

[7]
Federated learning for medical imaging radiology.

Br J Radiol. 2023-10

[8]
Medical Imaging Applications of Federated Learning.

Diagnostics (Basel). 2023-10-6

[9]
Federated Learning for Medical Image Analysis with Deep Neural Networks.

Diagnostics (Basel). 2023-4-24

[10]
Federated Learning with Research Prototypes: Application to Multi-Center MRI-based Detection of Prostate Cancer with Diverse Histopathology.

Acad Radiol. 2023-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索