IEEE J Biomed Health Inform. 2021 Oct;25(10):3700-3708. doi: 10.1109/JBHI.2020.3040269. Epub 2021 Oct 5.
Colorectal cancer (CRC) is one of the most life-threatening malignancies. Colonoscopy pathology examination can identify cells of early-stage colon tumors in small tissue image slices. But, such examination is time-consuming and exhausting on high resolution images. In this paper, we present a new framework for colonoscopy pathology whole slide image (WSI) analysis, including lesion segmentation and tissue diagnosis. Our framework contains an improved U-shape network with a VGG net as backbone, and two schemes for training and inference, respectively (the training scheme and inference scheme). Based on the characteristics of colonoscopy pathology WSI, we introduce a specific sampling strategy for sample selection and a transfer learning strategy for model training in our training scheme. Besides, we propose a specific loss function, class-wise DSC loss, to train the segmentation network. In our inference scheme, we apply a sliding-window based sampling strategy for patch generation and diploid ensemble (data ensemble and model ensemble) for the final prediction. We use the predicted segmentation mask to generate the classification probability for the likelihood of WSI being malignant. To our best knowledge, DigestPath 2019 is the first challenge and the first public dataset available on colonoscopy tissue screening and segmentation, and our proposed framework yields good performance on this dataset. Our new framework achieved a DSC of 0.7789 and AUC of 1 on the online test dataset, and we won the [Formula: see text] place in the DigestPath 2019 Challenge (task 2). Our code is available at https://github.com/bhfs9999/colonoscopy_tissue_screen_and_segmentation.
结直肠癌(CRC)是最具威胁生命的恶性肿瘤之一。结肠镜病理检查可以在小组织图像切片中识别早期结肠癌肿瘤的细胞。但是,这种检查对于高分辨率图像来说既耗时又费力。在本文中,我们提出了一种新的结肠镜病理全幻灯片图像(WSI)分析框架,包括病变分割和组织诊断。我们的框架包含一个改进的 U 形网络,其骨干为 VGG 网络,分别有两种训练和推理方案(训练方案和推理方案)。基于结肠镜病理 WSI 的特点,我们在训练方案中引入了特定的采样策略用于样本选择和迁移学习策略用于模型训练。此外,我们提出了一种特定的损失函数,即类间 DSC 损失,用于训练分割网络。在推理方案中,我们应用基于滑动窗口的采样策略用于生成补丁,并采用二倍体集成(数据集成和模型集成)进行最终预测。我们使用预测的分割掩模来生成 WSI 恶性可能性的分类概率。据我们所知,DigestPath 2019 是第一个挑战,也是第一个可用于结肠镜组织筛查和分割的公共数据集,我们的框架在这个数据集上取得了良好的性能。我们的新框架在在线测试数据集上的 DSC 为 0.7789,AUC 为 1,在 DigestPath 2019 挑战赛(任务 2)中获得了第[Formula: see text]名。我们的代码可在 https://github.com/bhfs9999/colonoscopy_tissue_screen_and_segmentation 上获得。