Suppr超能文献

基于 RNA-Seq SNPs 和高通量表型与气候数据的 GWAS 突出了区域番茄地方品种宝贵遗传多样性的蕴藏。

GWAS Based on RNA-Seq SNPs and High-Throughput Phenotyping Combined with Climatic Data Highlights the Reservoir of Valuable Genetic Diversity in Regional Tomato Landraces.

机构信息

Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy.

Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale-CBV, Università degli Studi di Sassari, 07041 Alghero, Italy.

出版信息

Genes (Basel). 2020 Nov 23;11(11):1387. doi: 10.3390/genes11111387.

Abstract

Tomato ( L.) is a widely used model plant species for dissecting out the genomic bases of complex traits to thus provide an optimal platform for modern "-omics" studies and genome-guided breeding. Genome-wide association studies (GWAS) have become a preferred approach for screening large diverse populations and many traits. Here, we present GWAS analysis of a collection of 115 landraces and 11 vintage and modern cultivars. A total of 26 conventional descriptors, 40 traits obtained by digital phenotyping, the fruit content of six carotenoids recorded at the early ripening (breaker) and red-ripe stages and 21 climate-related variables were analyzed in the context of genetic diversity monitored in the 126 accessions. The data obtained from thorough phenotyping and the SNP diversity revealed by sequencing of ripe fruit transcripts of 120 of the tomato accessions were jointly analyzed to determine which genomic regions are implicated in the expressed phenotypic variation. This study reveals that the use of fruit RNA-Seq SNP diversity is effective not only for identification of genomic regions that underlie variation in fruit traits, but also of variation related to additional plant traits and adaptive responses to climate variation. These results allowed validation of our approach because different marker-trait associations mapped on chromosomal regions where other candidate genes for the same traits were previously reported. In addition, previously uncharacterized chromosomal regions were targeted as potentially involved in the expression of variable phenotypes, thus demonstrating that our tomato collection is a precious reservoir of diversity and an excellent tool for gene discovery.

摘要

番茄(L.)是一种广泛使用的模式植物物种,用于剖析复杂性状的基因组基础,从而为现代“-omics”研究和基于基因组的育种提供最佳平台。全基因组关联研究(GWAS)已成为筛选大的多样化群体和许多性状的首选方法。在这里,我们对 115 个地方品种和 11 个传统和现代品种进行了 GWAS 分析。总共分析了 26 个常规描述符、40 个通过数字表型获得的性状、在早期成熟(breaker)和红色成熟阶段记录的六种类胡萝卜素的果实含量以及 21 个与气候相关的变量,这些变量与在 126 个品种中监测的遗传多样性有关。从彻底的表型分析中获得的数据和通过测序成熟果实转录本获得的 SNP 多样性,对 120 个番茄品种进行了联合分析,以确定哪些基因组区域与表现型变异有关。这项研究表明,使用果实 RNA-Seq SNP 多样性不仅可以有效地鉴定导致果实性状变异的基因组区域,还可以鉴定与其他植物性状和对气候变异的适应性反应相关的变异。这些结果验证了我们的方法,因为不同的标记-性状关联映射在染色体区域上,而这些区域之前曾报道过相同性状的其他候选基因。此外,以前未表征的染色体区域被作为潜在参与可变表型表达的区域,从而证明我们的番茄品种是多样性的宝贵资源,也是发现基因的优秀工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f421/7709041/6237f320ad59/genes-11-01387-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验