Suppr超能文献

患者病史 COVID-19(PH-Covid19)评分系统的开发和验证:墨西哥 COVID-19 患者死亡的多变量预测模型。

Development and validation of the patient history COVID-19 (PH-Covid19) scoring system: a multivariable prediction model of death in Mexican patients with COVID-19.

机构信息

Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico.

Departamento de Endocrinología, Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico.

出版信息

Epidemiol Infect. 2020 Nov 26;148:e286. doi: 10.1017/S0950268820002903.

Abstract

Most of the existing prediction models for COVID-19 lack validation, are inadequately reported or are at high risk of bias, a reason which has led to discourage their use. Few existing models have the potential to be extensively used by healthcare providers in low-resource settings since many require laboratory and imaging predictors. Therefore, we sought to develop and validate a multivariable prediction model of death in Mexican patients with COVID-19, by using demographic and patient history predictors. We conducted a national retrospective cohort study in two different sets of patients from the Mexican COVID-19 Epidemiologic Surveillance Study. Patients with a positive reverse transcription-polymerase chain reaction for SARS-CoV-2 and complete unduplicated data were eligible. In total, 83 779 patients were included to develop the scoring system through a multivariable Cox regression model; 100 000, to validate the model. Eight predictors (age, sex, diabetes, chronic obstructive pulmonary disease, immunosuppression, hypertension, obesity and chronic kidney disease) were included in the scoring system called PH-Covid19 (range of values: -2 to 25 points). The predictive model has a discrimination of death of 0.8 (95% confidence interval (CI) 0.796-0.804). The PH-Covid19 scoring system was developed and validated in Mexican patients to aid clinicians to stratify patients with COVID-19 at risk of fatal outcomes, allowing for better and efficient use of resources.

摘要

大多数现有的 COVID-19 预测模型缺乏验证,报告不充分或存在高偏倚风险,这使得人们不鼓励使用这些模型。由于许多模型需要实验室和影像学预测指标,因此很少有现有的模型有可能被资源有限的医疗保健提供者广泛使用。因此,我们试图通过使用人口统计学和患者病史预测指标,为墨西哥 COVID-19 患者开发和验证一种多变量死亡预测模型。我们在来自墨西哥 COVID-19 流行病学监测研究的两组不同患者中进行了一项全国性回顾性队列研究。符合条件的患者需要 SARS-CoV-2 的逆转录-聚合酶链反应(RT-PCR)阳性且数据完整无重复。共有 83779 例患者纳入多变量 Cox 回归模型中以开发评分系统;有 100000 例患者纳入模型进行验证。评分系统中包含 8 个预测因素(年龄、性别、糖尿病、慢性阻塞性肺疾病、免疫抑制、高血压、肥胖和慢性肾脏病),称为 PH-Covid19(分值范围:-2 至 25 分)。该预测模型对死亡的区分度为 0.8(95%置信区间[CI]为 0.796-0.804)。PH-Covid19 评分系统是在墨西哥患者中开发和验证的,旨在帮助临床医生对 COVID-19 患者进行分层,以识别有致命结局风险的患者,从而更好、更有效地利用资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e510/7729170/c6ebec676ddf/S0950268820002903_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验