Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA.
Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA.
Nat Commun. 2020 Nov 25;11(1):5990. doi: 10.1038/s41467-020-19660-6.
Bioresorbable electronic stimulators are of rapidly growing interest as unusual therapeutic platforms, i.e., bioelectronic medicines, for treating disease states, accelerating wound healing processes and eliminating infections. Here, we present advanced materials that support operation in these systems over clinically relevant timeframes, ultimately bioresorbing harmlessly to benign products without residues, to eliminate the need for surgical extraction. Our findings overcome key challenges of bioresorbable electronic devices by realizing lifetimes that match clinical needs. The devices exploit a bioresorbable dynamic covalent polymer that facilitates tight bonding to itself and other surfaces, as a soft, elastic substrate and encapsulation coating for wireless electronic components. We describe the underlying features and chemical design considerations for this polymer, and the biocompatibility of its constituent materials. In devices with optimized, wireless designs, these polymers enable stable, long-lived operation as distal stimulators in a rat model of peripheral nerve injuries, thereby demonstrating the potential of programmable long-term electrical stimulation for maintaining muscle receptivity and enhancing functional recovery.
生物可吸收电子刺激器作为一种新型的治疗平台,即生物电子药物,正在迅速引起人们的兴趣,用于治疗疾病、加速伤口愈合过程和消除感染。在这里,我们介绍了支持这些系统在临床相关时间范围内运行的先进材料,最终无害地生物吸收为良性产物,而无需手术提取。我们的研究结果通过实现与临床需求相匹配的寿命,克服了生物可吸收电子设备的关键挑战。这些设备利用了一种生物可吸收的动态共价聚合物,该聚合物便于与自身和其他表面紧密结合,作为无线电子元件的柔软、弹性基底和封装涂层。我们描述了这种聚合物的基本特性和化学设计考虑因素,以及其组成材料的生物相容性。在具有优化的无线设计的设备中,这些聚合物能够作为周围神经损伤大鼠模型中的远程刺激器进行稳定、长寿命的操作,从而证明可编程的长期电刺激对于维持肌肉接受性和增强功能恢复的潜力。