Suppr超能文献

利用多次低剂量 PET 图像(在不同剂量水平)作为先验知识来预测标准剂量 PET 图像。

Employing Multiple Low-Dose PET Images (at Different Dose Levels) as Prior Knowledge to Predict Standard-Dose PET Images.

机构信息

Nuclear Engineering Department, Shiraz University, Shiraz, Iran.

Division of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland.

出版信息

J Digit Imaging. 2023 Aug;36(4):1588-1596. doi: 10.1007/s10278-023-00815-y. Epub 2023 Mar 29.

Abstract

The existing deep learning-based denoising methods predicting standard-dose PET images (S-PET) from the low-dose versions (L-PET) solely rely on a single-dose level of PET images as the input of deep learning network. In this work, we exploited the prior knowledge in the form of multiple low-dose levels of PET images to estimate the S-PET images. To this end, a high-resolution ResNet architecture was utilized to predict S-PET images from 6 to 4% L-PET images. For the 6% L-PET imaging, two models were developed; the first and second models were trained using a single input of 6% L-PET and three inputs of 6%, 4%, and 2% L-PET as input to predict S-PET images, respectively. Similarly, for 4% L-PET imaging, a model was trained using a single input of 4% low-dose data, and a three-channel model was developed getting 4%, 3%, and 2% L-PET images. The performance of the four models was evaluated using structural similarity index (SSI), peak signal-to-noise ratio (PSNR), and root mean square error (RMSE) within the entire head regions and malignant lesions. The 4% multi-input model led to improved SSI and PSNR and a significant decrease in RMSE by 22.22% and 25.42% within the entire head region and malignant lesions, respectively. Furthermore, the 4% multi-input network remarkably decreased the lesions' SUV bias and SUV bias by 64.58% and 37.12% comparing to single-input network. In addition, the 6% multi-input network decreased the RMSE within the entire head region, within the lesions, lesions' SUV bias, and SUV bias by 37.5%, 39.58%, 86.99%, and 45.60%, respectively. This study demonstrated the significant benefits of using prior knowledge in the form of multiple L-PET images to predict S-PET images.

摘要

现有的基于深度学习的去噪方法仅依赖于单次剂量水平的 PET 图像作为深度学习网络的输入,来预测标准剂量 PET 图像(S-PET)。在这项工作中,我们利用了以多种低剂量 PET 图像形式呈现的先验知识来估计 S-PET 图像。为此,我们利用了高分辨率 ResNet 架构,从 6%到 4%的低剂量 PET 图像预测 S-PET 图像。对于 6%的低剂量 PET 成像,我们开发了两种模型;第一种和第二种模型分别使用单一的 6%低剂量 PET 输入和 6%、4%和 2%低剂量 PET 的三个输入来训练,以预测 S-PET 图像。同样,对于 4%的低剂量 PET 成像,我们使用单一的 4%低剂量数据输入训练了一个模型,并开发了一个三通道模型,用于获取 4%、3%和 2%的低剂量 PET 图像。我们使用结构相似性指数(SSI)、峰值信噪比(PSNR)和均方根误差(RMSE)来评估这四个模型在整个头部区域和恶性病变中的性能。4%的多输入模型在整个头部区域和恶性病变中导致 SSI 和 PSNR 显著提高,而 RMSE 显著降低 22.22%和 25.42%。此外,4%的多输入网络与单输入网络相比,显著降低了病变的 SUV 偏差和 SUV 偏差,分别为 64.58%和 37.12%。此外,6%的多输入网络降低了整个头部区域、病变内、病变的 SUV 偏差和 SUV 偏差的 RMSE,分别为 37.5%、39.58%、86.99%和 45.60%。这项研究表明,利用多种低剂量 PET 图像形式的先验知识来预测 S-PET 图像具有显著的优势。

相似文献

引用本文的文献

5
Deep learning-based PET image denoising and reconstruction: a review.基于深度学习的 PET 图像去噪与重建:综述
Radiol Phys Technol. 2024 Mar;17(1):24-46. doi: 10.1007/s12194-024-00780-3. Epub 2024 Feb 6.

本文引用的文献

6
Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging.深度学习辅助的超快速/低剂量全身 PET/CT 成像。
Eur J Nucl Med Mol Imaging. 2021 Jul;48(8):2405-2415. doi: 10.1007/s00259-020-05167-1. Epub 2021 Jan 25.
7
Non-local mean denoising using multiple PET reconstructions.利用多次 PET 重建进行非局部均值去噪。
Ann Nucl Med. 2021 Feb;35(2):176-186. doi: 10.1007/s12149-020-01550-y. Epub 2020 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验