Department of Biostatistics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
Pharm Stat. 2021 Jan;20(1):93-108. doi: 10.1002/pst.2058. Epub 2020 Aug 16.
Likelihood-based, mixed-effects models for repeated measures (MMRMs) are occasionally used in primary analyses for group comparisons of incomplete continuous longitudinal data. Although MMRM analysis is generally valid under missing-at-random assumptions, it is invalid under not-missing-at-random (NMAR) assumptions. We consider the possibility of bias of estimated treatment effect using standard MMRM analysis in a motivational case, and propose simple and easily implementable pattern mixture models within the framework of mixed-effects modeling, to handle the NMAR data with differential missingness between treatment groups. The proposed models are a new form of pattern mixture model that employ a categorical time variable when modeling the outcome and a continuous time variable when modeling the missingness-data patterns. The models can directly provide an overall estimate of the treatment effect of interest using the average of the distribution of the missingness indicator and a categorical time variable in the same manner as MMRM analysis. Our simulation results indicate that the bias of the treatment effect for MMRM analysis was considerably larger than that for the pattern mixture model analysis under NMAR assumptions. In the case study, it would be dangerous to interpret only the results of the MMRM analysis, and the proposed pattern mixture model would be useful as a sensitivity analysis for treatment effect evaluation.
基于似然的重复测量混合效应模型(MMRMs)偶尔用于不完全连续纵向数据的组间比较的主要分析。虽然在随机缺失假设下,MMRM 分析通常是有效的,但在非随机缺失(NMAR)假设下是无效的。我们考虑了在动机案例中使用标准 MMRM 分析估计处理效果的偏差的可能性,并在混合效应模型的框架内提出了简单且易于实施的模式混合模型,以处理组间具有差异缺失的 NMAR 数据。所提出的模型是一种新形式的模式混合模型,在对结果进行建模时使用分类时间变量,在对缺失数据模式进行建模时使用连续时间变量。这些模型可以直接使用缺失指标和相同的分类时间变量的分布的平均值来提供感兴趣的处理效果的总体估计,这与 MMRM 分析相同。我们的模拟结果表明,在 NMAR 假设下,MMRM 分析的处理效果的偏差明显大于模式混合模型分析的偏差。在案例研究中,仅解释 MMRM 分析的结果是危险的,所提出的模式混合模型将作为处理效果评估的敏感性分析很有用。