Suppr超能文献

T1期透明细胞肾细胞癌:一种基于CT的影像组学列线图,用于评估复发和转移风险。

T1 Stage Clear Cell Renal Cell Carcinoma: A CT-Based Radiomics Nomogram to Estimate the Risk of Recurrence and Metastasis.

作者信息

Kang Bing, Sun Cong, Gu Hui, Yang Shifeng, Yuan Xianshun, Ji Congshan, Huang Zhaoqin, Yu Xinxin, Duan Shaofeng, Wang Ximing

机构信息

School of Medicine, Shandong University, Jinan, China.

Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.

出版信息

Front Oncol. 2020 Nov 4;10:579619. doi: 10.3389/fonc.2020.579619. eCollection 2020.

Abstract

OBJECTIVES

To develop and validate a radiomics nomogram to improve prediction of recurrence and metastasis risk in T1 stage clear cell renal cell carcinoma (ccRCC).

METHODS

This retrospective study recruited 168 consecutive patients (mean age, 53.9 years; range, 28-76 years; 43 women) with T1 ccRCC between January 2012 and June 2019, including 50 aggressive ccRCC based on synchronous metastasis or recurrence after surgery. The patients were divided into two cohorts (training and validation) at a 7:3 ratio. Radiomics features were extracted from contrast enhanced CT images. A radiomics signature was developed based on reproducible features by means of the least absolute shrinkage and selection operator method. Demographics, laboratory variables (including sex, age, Fuhrman grade, hemoglobin, platelet, neutrophils, albumin, and calcium) and CT findings were combined to develop clinical factors model. Integrating radiomics signature and independent clinical factors, a radiomics nomogram was developed. Nomogram performance was determined by calibration, discrimination, and clinical usefulness.

RESULTS

Ten features were used to build radiomics signature, which yielded an area under the curve (AUC) of 0.86 in the training cohort and 0.85 in the validation cohort. By incorporating the sex, maximum diameter, neutrophil count, albumin count, and radiomics score, a radiomics nomogram was developed. Radiomics nomogram (AUC: training, 0.91; validation, 0.92) had higher performance than clinical factors model (AUC: training, 0.86; validation, 0.90) or radiomics signature as a means of identifying patients at high risk for recurrence and metastasis. The radiomics nomogram had higher sensitivity than clinical factors mode (McNemar's chi-squared = 4.1667, p = 0.04) and a little lower specificity than clinical factors model (McNemar's chi-squared = 3.2, p = 0.07). The nomogram showed good calibration. Decision curve analysis demonstrated the superiority of the nomogram compared with the clinical factors model in terms of clinical usefulness.

CONCLUSION

The CT-based radiomics nomogram could help in predicting recurrence and metastasis risk in T1 ccRCC, which might provide assistance for clinicians in tailoring precise therapy.

摘要

目的

开发并验证一种放射组学列线图,以改善对T1期透明细胞肾细胞癌(ccRCC)复发和转移风险的预测。

方法

这项回顾性研究纳入了2012年1月至2019年6月期间连续收治的168例T1期ccRCC患者(平均年龄53.9岁;范围28 - 76岁;43例女性),其中包括50例基于术后同步转移或复发的侵袭性ccRCC。患者按7:3的比例分为两个队列(训练队列和验证队列)。从对比增强CT图像中提取放射组学特征。通过最小绝对收缩和选择算子方法,基于可重复的特征开发了一种放射组学特征。将人口统计学、实验室变量(包括性别、年龄、Fuhrman分级、血红蛋白、血小板、中性粒细胞、白蛋白和钙)以及CT表现相结合,开发了临床因素模型。整合放射组学特征和独立的临床因素,构建了一种放射组学列线图。通过校准、区分度和临床实用性来确定列线图的性能。

结果

使用10个特征构建放射组学特征,其在训练队列中的曲线下面积(AUC)为0.86,在验证队列中为0.85。通过纳入性别、最大直径、中性粒细胞计数、白蛋白计数和放射组学评分,构建了一种放射组学列线图。放射组学列线图(AUC:训练队列,0.91;验证队列,0.92)在识别复发和转移高风险患者方面比临床因素模型(AUC:训练队列,0.86;验证队列,0.90)或放射组学特征具有更高的性能。放射组学列线图的敏感性高于临床因素模型(McNemar卡方 = 4.1667,p = 0.04),特异性略低于临床因素模型(McNemar卡方 = 3.2,p = 0.07)。列线图显示出良好的校准。决策曲线分析表明,在临床实用性方面,列线图优于临床因素模型。

结论

基于CT的放射组学列线图有助于预测T1期ccRCC的复发和转移风险,可为临床医生制定精准治疗方案提供帮助。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验