Suppr超能文献

基于语音的数字生物标志物评估:综述与建议

Evaluation of Speech-Based Digital Biomarkers: Review and Recommendations.

作者信息

Robin Jessica, Harrison John E, Kaufman Liam D, Rudzicz Frank, Simpson William, Yancheva Maria

机构信息

Winterlight Labs, Toronto, Ontario, Canada.

Metis Cognition Ltd., Park House, Kilmington Common, Warminster, United Kingdom.

出版信息

Digit Biomark. 2020 Oct 19;4(3):99-108. doi: 10.1159/000510820. eCollection 2020 Sep-Dec.

Abstract

Speech represents a promising novel biomarker by providing a window into brain health, as shown by its disruption in various neurological and psychiatric diseases. As with many novel digital biomarkers, however, rigorous evaluation is currently lacking and is required for these measures to be used effectively and safely. This paper outlines and provides examples from the literature of evaluation steps for speech-based digital biomarkers, based on the recent V3 framework (Goldsack et al., 2020). The V3 framework describes 3 components of evaluation for digital biomarkers: verification, analytical validation, and clinical validation. Verification includes assessing the quality of speech recordings and comparing the effects of hardware and recording conditions on the integrity of the recordings. Analytical validation includes checking the accuracy and reliability of data processing and computed measures, including understanding test-retest reliability, demographic variability, and comparing measures to reference standards. Clinical validity involves verifying the correspondence of a measure to clinical outcomes which can include diagnosis, disease progression, or response to treatment. For each of these sections, we provide recommendations for the types of evaluation necessary for speech-based biomarkers and review published examples. The examples in this paper focus on speech-based biomarkers, but they can be used as a template for digital biomarker development more generally.

摘要

语音通过提供洞察大脑健康的窗口,成为一种很有前景的新型生物标志物,各种神经和精神疾病中的语音障碍就表明了这一点。然而,与许多新型数字生物标志物一样,目前缺乏严格的评估,而这些措施要有效且安全地使用就需要进行严格评估。本文基于最近的V3框架(戈尔萨克等人,2020年)概述了基于语音的数字生物标志物的评估步骤,并从文献中给出了示例。V3框架描述了数字生物标志物评估的三个组成部分:验证、分析验证和临床验证。验证包括评估语音记录的质量,以及比较硬件和记录条件对记录完整性的影响。分析验证包括检查数据处理和计算指标的准确性和可靠性,包括了解重测可靠性、人口统计学变异性,以及将指标与参考标准进行比较。临床有效性涉及验证一个指标与临床结果的对应关系,临床结果可以包括诊断、疾病进展或对治疗的反应。对于这些部分中的每一部分,我们都针对基于语音的生物标志物所需的评估类型提供了建议,并回顾了已发表的示例。本文中的示例侧重于基于语音的生物标志物,但它们更广泛地可作为数字生物标志物开发的模板。

相似文献

1
Evaluation of Speech-Based Digital Biomarkers: Review and Recommendations.
Digit Biomark. 2020 Oct 19;4(3):99-108. doi: 10.1159/000510820. eCollection 2020 Sep-Dec.
2
Analytical Validation of a Webcam-Based Assessment of Speech Kinematics: Digital Biomarker Evaluation following the V3 Framework.
Digit Biomark. 2023 Apr 28;7(1):7-17. doi: 10.1159/000529685. eCollection 2023 Jan-Dec.
4
Clinical Validation of Novel Digital Measures: Statistical Methods for Reliability Evaluation.
Digit Biomark. 2023 Aug 9;7(1):74-91. doi: 10.1159/000531054. eCollection 2023 Jan-Dec.
5
Digital data collection and analysis: application for clinical practice.
Lang Speech Hear Serv Sch. 2004 Apr;35(2):112-21. doi: 10.1044/0161-1461(2004/013).
6
Evaluation, Acceptance, and Qualification of Digital Measures: From Proof of Concept to Endpoint.
Digit Biomark. 2021 Mar 23;5(1):53-64. doi: 10.1159/000514730. eCollection 2021 Jan-Apr.
7
Validation of biomarkers to predict response to immunotherapy in cancer: Volume I - pre-analytical and analytical validation.
J Immunother Cancer. 2016 Nov 15;4:76. doi: 10.1186/s40425-016-0178-1. eCollection 2016.
8
Normative and validation data of an articulation test for Italian-speaking children.
Int J Pediatr Otorhinolaryngol. 2018 Jul;110:81-86. doi: 10.1016/j.ijporl.2018.05.002. Epub 2018 May 5.
10
Avoiding and identifying errors in health technology assessment models: qualitative study and methodological review.
Health Technol Assess. 2010 May;14(25):iii-iv, ix-xii, 1-107. doi: 10.3310/hta14250.

引用本文的文献

2
Speech subtypes are associated with worsened tremor and axial symptoms in Parkinson's disease patients.
Clin Park Relat Disord. 2025 Jul 21;13:100373. doi: 10.1016/j.prdoa.2025.100373. eCollection 2025.
3
Listening to the Mind: Integrating Vocal Biomarkers into Digital Health.
Brain Sci. 2025 Jul 18;15(7):762. doi: 10.3390/brainsci15070762.
4
Hypertension Screening Using Acoustic Analysis and Machine Learning of Random Speech Samples: A Feasibility Study.
Digit Biomark. 2025 Jun 24;9(1):130-139. doi: 10.1159/000547077. eCollection 2025 Jan-Dec.
6
Developing and testing AI-based voice biomarker models to detect cognitive impairment among community dwelling adults: a cross-sectional study in Japan.
Lancet Reg Health West Pac. 2025 Jun 12;59:101598. doi: 10.1016/j.lanwpc.2025.101598. eCollection 2025 Jun.
7
Audio and linguistic prediction of objective and subjective cognition in older adults: what is the role of different prompts?
Front Psychiatry. 2025 Jul 1;16:1596132. doi: 10.3389/fpsyt.2025.1596132. eCollection 2025.
8
Master protocols in vocal biomarker development to reduce variability and advance clinical precision: a narrative review.
Front Digit Health. 2025 Jun 27;7:1619183. doi: 10.3389/fdgth.2025.1619183. eCollection 2025.
9
Measurement of schizophrenia symptoms through speech analysis from PANSS interview recordings.
Front Psychiatry. 2025 Jun 24;16:1571647. doi: 10.3389/fpsyt.2025.1571647. eCollection 2025.
10
Protocol for detection and monitoring of post-stroke cognitive impairment through AI-powered speech analysis: a mixed methods pilot study.
Front Aging Neurosci. 2025 May 1;17:1581891. doi: 10.3389/fnagi.2025.1581891. eCollection 2025.

本文引用的文献

1
Voice quality and speech fluency distinguish individuals with Mild Cognitive Impairment from Healthy Controls.
PLoS One. 2020 Jul 13;15(7):e0236009. doi: 10.1371/journal.pone.0236009. eCollection 2020.
4
Modernizing and designing evaluation frameworks for connected sensor technologies in medicine.
NPJ Digit Med. 2020 Mar 13;3:37. doi: 10.1038/s41746-020-0237-3. eCollection 2020.
5
Traditional and Digital Biomarkers: Two Worlds Apart?
Digit Biomark. 2019 Aug 16;3(2):92-102. doi: 10.1159/000502000. eCollection 2019 May-Aug.
6
Digital Medicine: A Primer on Measurement.
Digit Biomark. 2019 May 9;3(2):31-71. doi: 10.1159/000500413. eCollection 2019 May-Aug.
7
Acoustic differences between healthy and depressed people: a cross-situation study.
BMC Psychiatry. 2019 Oct 15;19(1):300. doi: 10.1186/s12888-019-2300-7.
9
Re-examining the robustness of voice features in predicting depression: Compared with baseline of confounders.
PLoS One. 2019 Jun 20;14(6):e0218172. doi: 10.1371/journal.pone.0218172. eCollection 2019.
10
Validating Automated Sentiment Analysis of Online Cognitive Behavioral Therapy Patient Texts: An Exploratory Study.
Front Psychol. 2019 May 14;10:1065. doi: 10.3389/fpsyg.2019.01065. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验