Suppr超能文献

嗓音生物标志物开发中的主方案以减少变异性并提高临床精准度:一项叙述性综述

Master protocols in vocal biomarker development to reduce variability and advance clinical precision: a narrative review.

作者信息

Kalia Ayush, Boyer Micah, Fagherazzi Guy, Bélisle-Pipon Jean-Christophe, Bensoussan Yael

机构信息

USF Health Voice Center, Department of Otolaryngology-Head & Neck Surgery, University of South Florida, Tampa, FL, United States.

Deep Digital Phenotyping Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg.

出版信息

Front Digit Health. 2025 Jun 27;7:1619183. doi: 10.3389/fdgth.2025.1619183. eCollection 2025.

Abstract

INTRODUCTION

Vocal biomarkers, defined as acoustic or linguistic features extracted from voice samples, are an emerging innovation in medical diagnostics. Utilizing artificial intelligence, machine learning, or traditional acoustic analysis, vocal biomarkers have shown promise in detecting and monitoring conditions such as respiratory disorders and cognitive impairments. Despite their potential, the lack of standardized protocols for data collection and analysis has limited their clinical applicability.

OBJECTIVES

This review assesses the current state of research on developing a master protocol for vocal biomarkers, identifying key aspects essential for reducing variability across studies. It also explores insights from digital biomarker research to inform the creation of a standardized framework for vocal biomarker development.

METHODS

A narrative review was conducted by searching PubMed for literature on vocal and digital biomarker development. Articles were evaluated based on their proposed frameworks and recommendations for addressing methodological inconsistencies.

RESULTS

Twenty-one relevant articles were identified, including 12 focused on vocal biomarkers and 9 addressing broader digital biomarkers. Vocal biomarker literature emphasized the lack of existing master protocols and the need for standardization. In contrast, digital biomarker research from organizations like the Digital Medicine Society offered structured frameworks applicable to voice research.

CONCLUSION

There is currently no established master protocol for vocal biomarker development. This review highlights foundational elements necessary for future standardization efforts to support the clinical integration of vocal biomarkers in healthcare.

摘要

引言

声音生物标志物被定义为从语音样本中提取的声学或语言特征,是医学诊断领域一项新兴的创新技术。利用人工智能、机器学习或传统声学分析方法,声音生物标志物在检测和监测诸如呼吸系统疾病和认知障碍等病症方面已显示出前景。尽管它们具有潜力,但缺乏数据收集和分析的标准化方案限制了其临床应用。

目的

本综述评估了制定声音生物标志物主方案的研究现状,确定了减少各研究间变异性所需的关键方面。它还探讨了数字生物标志物研究的见解,以为创建声音生物标志物开发的标准化框架提供参考。

方法

通过在PubMed上搜索有关声音和数字生物标志物开发的文献进行叙述性综述。根据文章提出的框架以及解决方法不一致问题的建议对文章进行评估。

结果

共识别出21篇相关文章,其中12篇聚焦于声音生物标志物,9篇涉及更广泛的数字生物标志物。声音生物标志物文献强调了现有主方案的缺乏以及标准化的必要性。相比之下,数字医学协会等组织的数字生物标志物研究提供了适用于语音研究的结构化框架。

结论

目前尚无既定的声音生物标志物开发主方案。本综述强调了未来标准化工作所需的基础要素,以支持声音生物标志物在医疗保健中的临床整合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/052b/12247298/98651d013f6e/fdgth-07-1619183-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验