Suppr超能文献

一个多尺度的皮质布线空间将人类大脑中的细胞结构与功能动力学联系起来。

A multi-scale cortical wiring space links cellular architecture and functional dynamics in the human brain.

作者信息

Paquola Casey, Seidlitz Jakob, Benkarim Oualid, Royer Jessica, Klimes Petr, Bethlehem Richard A I, Larivière Sara, Vos de Wael Reinder, Rodríguez-Cruces Raul, Hall Jeffery A, Frauscher Birgit, Smallwood Jonathan, Bernhardt Boris C

机构信息

Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.

Developmental Neurogenomics Unit, National Institute of Mental Health, Bethesda, Maryland, United States of America.

出版信息

PLoS Biol. 2020 Nov 30;18(11):e3000979. doi: 10.1371/journal.pbio.3000979. eCollection 2020 Nov.

Abstract

The vast net of fibres within and underneath the cortex is optimised to support the convergence of different levels of brain organisation. Here, we propose a novel coordinate system of the human cortex based on an advanced model of its connectivity. Our approach is inspired by seminal, but so far largely neglected models of cortico-cortical wiring established by postmortem anatomical studies and capitalises on cutting-edge in vivo neuroimaging and machine learning. The new model expands the currently prevailing diffusion magnetic resonance imaging (MRI) tractography approach by incorporation of additional features of cortical microstructure and cortico-cortical proximity. Studying several datasets and different parcellation schemes, we could show that our coordinate system robustly recapitulates established sensory-limbic and anterior-posterior dimensions of brain organisation. A series of validation experiments showed that the new wiring space reflects cortical microcircuit features (including pyramidal neuron depth and glial expression) and allowed for competitive simulations of functional connectivity and dynamics based on resting-state functional magnetic resonance imaging (rs-fMRI) and human intracranial electroencephalography (EEG) coherence. Our results advance our understanding of how cell-specific neurobiological gradients produce a hierarchical cortical wiring scheme that is concordant with increasing functional sophistication of human brain organisation. Our evaluations demonstrate the cortical wiring space bridges across scales of neural organisation and can be easily translated to single individuals.

摘要

皮质内部及下方的庞大纤维网络经过优化,以支持不同层次的脑组织结构的汇聚。在此,我们基于人类皮质连接性的先进模型,提出了一种全新的人类皮质坐标系。我们的方法受到了死后解剖学研究建立的开创性但至今大多被忽视的皮质-皮质布线模型的启发,并利用了前沿的活体神经成像和机器学习技术。新模型通过纳入皮质微结构和皮质-皮质邻近性的其他特征,扩展了当前流行的扩散磁共振成像(MRI)纤维束成像方法。通过研究多个数据集和不同的脑区划分方案,我们能够表明我们的坐标系有力地概括了已确立的脑组织结构的感觉-边缘和前后维度。一系列验证实验表明,新的布线空间反映了皮质微电路特征(包括锥体神经元深度和胶质细胞表达),并允许基于静息态功能磁共振成像(rs-fMRI)和人类颅内脑电图(EEG)相干性进行功能连接和动力学的竞争性模拟。我们的结果推进了我们对细胞特异性神经生物学梯度如何产生与人类脑组织结构功能复杂性增加相一致的分层皮质布线方案的理解。我们的评估表明,皮质布线空间跨越了神经组织的多个尺度,并且可以很容易地转化到个体身上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a3f/7728398/ccc1c0e0478a/pbio.3000979.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验