Suppr超能文献

植物单细胞代谢组学——挑战与展望。

Plant Single-Cell Metabolomics-Challenges and Perspectives.

机构信息

Max Planck Institute of Molecular Plant Physiology, Am Müehlenberg 1, Golm, 14476 Potsdam, Germany.

Department of Biology, Utah State University, 1435 Old Main Hill, Logan, UT 84322, USA.

出版信息

Int J Mol Sci. 2020 Nov 26;21(23):8987. doi: 10.3390/ijms21238987.

Abstract

Omics approaches for investigating biological systems were introduced in the mid-1990s and quickly consolidated to become a fundamental pillar of modern biology. The idea of measuring the whole complement of genes, transcripts, proteins, and metabolites has since become widespread and routinely adopted in the pursuit of an infinity of scientific questions. Incremental improvements over technical aspects such as sampling, sensitivity, cost, and throughput pushed even further the boundaries of what these techniques can achieve. In this context, single-cell genomics and transcriptomics quickly became a well-established tool to answer fundamental questions challenging to assess at a whole tissue level. Following a similar trend as the original development of these techniques, proteomics alternatives for single-cell exploration have become more accessible and reliable, whilst metabolomics lag behind the rest. This review summarizes state-of-the-art technologies for spatially resolved metabolomics analysis, as well as the challenges hindering the achievement of sensu stricto metabolome coverage at the single-cell level. Furthermore, we discuss several essential contributions to understanding plant single-cell metabolism, finishing with our opinion on near-future developments and relevant scientific questions that will hopefully be tackled by incorporating these new exciting technologies.

摘要

组学方法于 20 世纪 90 年代中期被引入,并迅速成为现代生物学的一个重要支柱。测量整个基因、转录本、蛋白质和代谢物组的想法已经得到广泛应用,并在解决无数科学问题的过程中得到了常规应用。在采样、灵敏度、成本和通量等技术方面的不断改进,甚至进一步拓展了这些技术所能达到的极限。在这种背景下,单细胞基因组学和转录组学迅速成为回答在整个组织水平上难以评估的基本问题的有效工具。与这些技术的最初发展类似,单细胞探索的蛋白质组学替代方法变得更加容易获得和可靠,而代谢组学则落后于其他方法。本文综述了用于空间分辨代谢组学分析的最新技术,以及阻碍在单细胞水平上实现严格意义上的代谢组全覆盖的挑战。此外,我们还讨论了对理解植物单细胞代谢的一些重要贡献,最后我们对未来的发展和相关的科学问题发表了看法,希望通过结合这些新的令人兴奋的技术能够解决这些问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/7730874/ef5e737ef92a/ijms-21-08987-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验