Suppr超能文献

基于深度学习的 SARS-CoV-2 选择性电化学检测。

Selective Electrochemical Detection of SARS-CoV-2 Using Deep Learning.

机构信息

Chemical and Electrochemical Technology and Innovation (CETI) Laboratory, Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.

出版信息

Viruses. 2022 Aug 30;14(9):1930. doi: 10.3390/v14091930.

Abstract

COVID-19 has been in the headlines for the past two years. Diagnosing this infection with minimal false rates is still an issue even with the advent of multiple rapid antigen tests. Enormous data are being collected every day that could provide insight into reducing the false diagnosis. Machine learning (ML) and deep learning (DL) could be the way forward to process these data and reduce the false diagnosis rates. In this study, ML and DL approaches have been applied to the data set collected using an ultra-fast COVID-19 diagnostic sensor (UFC-19). The ability of ML and DL to specifically detect SARS-CoV-2 signals against SARS-CoV, MERS-CoV, Human CoV, and Influenza was investigated. UFC-19 is an electrochemical sensor that was used to test these virus samples and the obtained current response dataset was used to diagnose SARS-CoV-2 using different algorithms. Our results indicate that the convolution neural networks algorithm could diagnose SARS-CoV-2 samples with a sensitivity of 96.15%, specificity of 98.17%, and accuracy of 97.20%. Combining this DL model with the existing UFC-19 could selectively identify SARS-CoV-2 presence within two minutes.

摘要

在过去的两年里,COVID-19 一直是头条新闻。即使有了多种快速抗原检测,以最小的假阳性率诊断这种感染仍然是一个问题。每天都在收集大量的数据,这些数据可能有助于减少误诊。机器学习 (ML) 和深度学习 (DL) 可能是处理这些数据并降低误诊率的方法。在这项研究中,已经将 ML 和 DL 方法应用于使用超快速 COVID-19 诊断传感器 (UFC-19) 收集的数据集。研究了 ML 和 DL 方法在特异性检测 SARS-CoV-2 信号方面的能力,以对抗 SARS-CoV、MERS-CoV、人类 CoV 和流感。UFC-19 是一种电化学传感器,用于测试这些病毒样本,获得的电流响应数据集用于使用不同的算法诊断 SARS-CoV-2。我们的结果表明,卷积神经网络算法可以以 96.15%的灵敏度、98.17%的特异性和 97.20%的准确率诊断 SARS-CoV-2 样本。将这个 DL 模型与现有的 UFC-19 结合使用,可以在两分钟内选择性地识别 SARS-CoV-2 的存在。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验