Frank Steven A
Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525, USA.
Entropy (Basel). 2018 Dec 16;20(12):978. doi: 10.3390/e20120978.
The fundamental equations of various disciplines often seem to share the same basic structure. Natural selection increases information in the same way that Bayesian updating increases information. Thermodynamics and the forms of common probability distributions express maximum increase in entropy, which appears mathematically as loss of information. Physical mechanics follows paths of change that maximize Fisher information. The information expressions typically have analogous interpretations as the Newtonian balance between force and acceleration, representing a partition between the direct causes of change and the opposing changes in the frame of reference. This web of vague analogies hints at a deeper common mathematical structure. I suggest that the Price equation expresses that underlying universal structure. The abstract Price equation describes dynamics as the change between two sets. One component of dynamics expresses the change in the frequency of things, holding constant the values associated with things. The other component of dynamics expresses the change in the values of things, holding constant the frequency of things. The separation of frequency from value generalizes Shannon's separation of the frequency of symbols from the meaning of symbols in information theory. The Price equation's generalized separation of frequency and value reveals a few simple invariances that define universal geometric aspects of change. For example, the conservation of total frequency, although a trivial invariance by itself, creates a powerful constraint on the geometry of change. That constraint plus a few others seem to explain the common structural forms of the equations in different disciplines. From that abstract perspective, interpretations such as selection, information, entropy, force, acceleration, and physical work arise from the same underlying geometry expressed by the Price equation.
各学科的基本方程往往似乎具有相同的基本结构。自然选择增加信息的方式与贝叶斯更新增加信息的方式相同。热力学和常见概率分布的形式表示熵的最大增加,这在数学上表现为信息的损失。物理力学遵循使费希尔信息最大化的变化路径。这些信息表达式通常具有类似的解释,如同牛顿力学中力与加速度之间的平衡,代表了变化的直接原因与参考系中相反变化之间的一种划分。这张由模糊类比构成的网络暗示着一种更深层次的通用数学结构。我认为普赖斯方程表达了这种潜在的通用结构。抽象的普赖斯方程将动力学描述为两个集合之间的变化。动力学的一个组成部分表示事物频率的变化,同时保持与事物相关的值不变。动力学的另一个组成部分表示事物值的变化,同时保持事物的频率不变。频率与值的分离推广了香农在信息论中对符号频率与符号意义的分离。普赖斯方程对频率和值的广义分离揭示了一些简单的不变性,这些不变性定义了变化的通用几何特征。例如,总频率的守恒,尽管其本身是一个平凡的不变性,但对变化的几何结构产生了强大的约束。该约束加上其他一些约束似乎解释了不同学科中方程的常见结构形式。从那个抽象的角度来看,诸如选择、信息、熵、力、加速度和物理功等解释都源自普赖斯方程所表达的相同潜在几何结构。