Suppr超能文献

基于代谢组学的系统医学中单样本网络推理方法的评估

Evaluation of Single Sample Network Inference Methods for Metabolomics-Based Systems Medicine.

作者信息

Jahagirdar Sanjeevan, Saccenti Edoardo

机构信息

Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.

出版信息

J Proteome Res. 2021 Jan 1;20(1):932-949. doi: 10.1021/acs.jproteome.0c00696. Epub 2020 Dec 2.

Abstract

Networks and network analyses are fundamental tools of systems biology. Networks are built by inferring pair-wise relationships among biological entities from a large number of samples such that subject-specific information is lost. The possibility of constructing these sample (individual)-specific networks from single molecular profiles might offer new insights in systems and personalized medicine and as a consequence is attracting more and more research interest. In this study, we evaluated and compared LIONESS (Linear Interpolation to Obtain Network Estimates for Single Samples) and ssPCC (single sample network based on Pearson correlation) in the metabolomics context of metabolite-metabolite association networks. We illustrated and explored the characteristics of these two methods on (i) simulated data, (ii) data generated from a dynamic metabolic model to simulate real-life observed metabolite concentration profiles, and (iii) 22 metabolomic data sets and (iv) we applied single sample network inference to a study case pertaining to the investigation of necrotizing soft tissue infections to show how these methods can be applied in metabolomics. We also proposed some adaptations of the methods that can be used for data exploration. Overall, despite some limitations, we found single sample networks to be a promising tool for the analysis of metabolomics data.

摘要

网络和网络分析是系统生物学的基本工具。网络是通过从大量样本中推断生物实体之间的成对关系构建而成的,这样一来特定个体的信息就丢失了。从单分子谱构建这些特定样本(个体)网络的可能性可能会为系统医学和个性化医学提供新的见解,因此正吸引着越来越多的研究兴趣。在本研究中,我们在代谢物 - 代谢物关联网络的代谢组学背景下评估并比较了LIONESS(线性插值以获得单样本网络估计)和ssPCC(基于皮尔逊相关性的单样本网络)。我们在以下方面阐述并探究了这两种方法的特性:(i)模拟数据,(ii)从动态代谢模型生成的数据以模拟实际观察到的代谢物浓度谱,(iii)22个代谢组学数据集,以及(iv)我们将单样本网络推断应用于一个与坏死性软组织感染调查相关的研究案例,以展示这些方法如何应用于代谢组学。我们还提出了一些可用于数据探索的方法调整。总体而言,尽管存在一些局限性,但我们发现单样本网络是分析代谢组学数据的一个有前景的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17ae/7786380/b984ce3ad414/pr0c00696_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验